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Abstract: In order to provide intelligent services, the Internet of Things (IoT) facilitates millions of smart cyber-physical devices
to be enabled with network connectivity to sense, collect, process, and exchange information. Unfortunately, the traditional
communication infrastructure is vulnerable to cyber attacks and link failures, so it is a challenging task for the IoT to explore
these applications. In order to begin research and contribute into the IoT-based cyber-physical digital world, one will need to
know the technical challenges and research opportunities. In this study, several key technical challenges and requirements for
the IoT communication systems are identified. Basically, privacy, security, intelligent sensors/actuators design, low cost and
complexity, universal antenna design, and friendly smart cyber-physical system design are the main challenges for the IoT
implementation. Finally, the authors present a diverse set of cyber-physical communication system challenges such as practical
implementation, distributed state estimation, real-time data collection, and system identification, which are the major issues
require to be addressed in implementing an efficient and effective IoT communication system.

1 Introduction
With the fast development of science and technology, industrial
applications are becoming complex and large. Large-scale control
systems are present everywhere to sustain the nominal operation of
many critical process that we rely on. In fact, cyber-physical
systems (CPSs) are a class of more complex large-scale systems,
which can integrate physical processes, computational resources,
and communication capability [1]. Typical CPSs can sense,
process, and control the physical system. Interestingly, many
practical systems can be categorised as CPSs, such as smart grids,
electric vehicles, wireless power transfer systems, unmanned aerial
vehicles, and robotic networks.

The Internet of Things (IoT) is the potential technology that
will be able to closely monitor the physical systems such as
wristwatches, vending machines, emergency alarms, garage, home
appliances, and smart vehicles from the remote control centre [2–
4]. It can be seen that all surrounding electronic devices to
facilitate our daily life operations are connected to the IoT network
and can be monitored as well as controlled remotely [5, 6].
Specifically, the IoT embedded sensors and actuators are integrated
into the physical systems such as automated vehicles and
microgrids [7]. There are significate research challenges that arise
when the IoT can integrate these smart devices into the digital
network.

The main contributions of this paper are summarised as follows:

• First of all, several key technical challenges and requirements
for the IoT-based CPSs are identified. Basically, privacy,
security, intelligent sensors/actuators design, low cost and
complexity, and friendly smart vehicle design are the main
challenges for the IoT-based cyber-physical communication
systems.

• We present a diverse set of future research directions such as
practical implementation, distributed state estimation, real-time
data collection, system identification and security.

The rest of the article is organised as follows. The IoT-based cyber-
physical communication architecture is described in Section 2.
Then the potential research challenges for the IoT systems are
summarised in Section 3. Finally, the future research directions and
conclusion are presented in Sections 4 and 5, respectively.

2 IoT-based cyber-physical communication
architecture
The IoT is revolutionising the automated control systems in the
area of smart homes, transportation, smart grid, and green cities.
The revolution comes through different steps. Fig. 1 shows the
evolution of the IoT in five phases [8]. It can be seen that the
evolution of internet begins with connecting two host PCs together
and then moved towards creating World Wide Web by connecting
huge number of PCs together. Afterwards, the mobile internet is
emerged by connecting terminal devices to the internet. Then,
people are connected to the internet via social networks. Finally, it
is moving towards the IoT by connecting every day smart objects
such as smart meters and phones to the internet [8]. Technically,
the IoT can allow things and people to be connected anytime using
any communication networks [3, 7, 9].

In order to connect the physical system to the control centre,
information is propagated by three key layers as shown in Fig. 2
[10–12]. In other words, the IoT system can be clearly
demonstrated by three layers: physical, transport, and application
[13]. In fact, the smart IoT objects such as home appliances,
electric vehicles, and phones are situated in the physical spaces.
Basically, the physical layer includes IoT sensors and actuators to
perform different measurements such as humidity, pressure, grid
voltage, and acceleration. Actually, the sensor can sense, collect,
process information, and then send it to the transport layer.
Basically, the transport layer mainly provides ubiquitous
communication for the perception layer using different access
networks such as WiFi, long-term evolution, fifth generation (5G)
technology and ad-hoc network [10, 11]. Finally, the application
layer provides the services requested by customers and operators.
For example, the application layer can provide high-quality smart
services such as grid voltage, temperature, and humidity
measurements to the customers asking for such data. With the
support of data storage and processing capability in the transport
layer, the physical layer provides reliable and accurate information
for customer and operator needs. Depending on the customer
requirements, different IoT access networks and communication
protocols provide specific services.

Generally speaking, communication network, intelligent
devices, and signal processing algorithms can play a vital role in
designing the IoT technology. To develop the IoT platform, the
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communication background and their technical features need to
know in advance. Table 1 illustrates the communication
technologies, and their real-time applications [3, 14–17]. It can be
seen that from the limited analogue communication platform, we
are living in IoT digital communication where anyone can

communicate and interact with the global information network
[18]. Basically, both 3G and 4G use code division multiple access
and frequency division multiple access (FDMA) schemes while the
5G uses single-carrier FDMA (SC-FDMA), and orthogonal
frequency-division multiple access (OFDMA) which can assign

Fig. 1  IoT evolution phrases [8]
 

Fig. 2  IoT-based cyber-physical communication architecture and its access networks
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subsets of subcarriers to the individual user [3, 14, 15, 19–21].
Consequently, massive number of users can use channel spectrum
properly without interference due to orthogonal property.
Therefore, the SC-FDMA/OFDMA is the promising technology for
5G IoT as it requires to handle massive amount of smart devices
and customers with high data rate. The performance comparisons
of 4G and 5G systems are shown in Table 2 [15, 17]. It can be seen
that 5G provides better speed and spectral efficiency compared
with 4G. Therefore, it is believed that 5G with IoT can integrate
any smart devices into the digital world effectively. Several key
technical challenges for the IoT-based CPS are presented in the
following section.

3 Challenges of IoT-based cyber-physical
communication systems
Generally speaking, CPSs can sense, process, and control the
physical system effectively. Interestingly, many practical systems
can be categorised as CPSs, such as smart grids, wireless power
transfer systems, electric vehicles, and robotic networks. There are
significant research challenges that arise when the IoT can
integrate these smart devices into digital network. The key
technical challenges are shown in Fig. 3. It can be seen that the
privacy, security, intelligent sensors/actuators design, low cost and
complexity, friendly smart CPS design are the main challenges for
the IoT implementation. The key technical challenges for IoT-
based CPSs are described as follows:

i. Security and privacy: There are massive number of smart
objects connected to the IoT. They are mostly situated in the
open space where they used simple encryption and pass keys
[22, 23]. Therefore, it is easy for eavesdroppers to hack smart

objects. For example, after hacking the electric vehicle, the
hacker can take all items and personal information.
Furthermore, the fare can also be manipulated and transferred.
Consequently, security and privacy are the main challenges to
design IoT-based smart electric vehicles.

ii. Modelling hybrid physical systems: Most of the physical
system is continuous and non-linear in nature. For instance, the
state-space representation of the power system and electric
vehicle are non-linear and continuous time [24, 25]. The
system is processed by the digital computer where discrete-
time scheme is preferred. Generally, the discrete-time system is
easy to implement in the digital computer, while the
continuous system is easy to analyse from the mathematical
perspective [26]. Furthermore, the non-linear system requires
to linearise around the operating points, and it introduces
errors. Considering the linearised and quantisation errors in
state-space model is originally reflected the true system.
However, considering these errors, it is very difficult to
develop an estimation and control algorithm [26]. Due to
mathematical difficulties, sometimes researchers analysed the
algorithmic convergence in continuous-time while the
developed algorithm is discrete time [26, 27].

iii. Smart control centre design: In order to visualise and monitor
the physical system, the control centre such as SCADA uses
state estimation and stabilisation algorithms [28]. For different
systems such as vehicle monitoring and smart grid, there are
different types of SCADA systems designed and implemented
in real time. However, most of the approaches are developed
without considering cyber attacks and noises. As we are living
in the IoT-based two-way communication era, so the system
impairments such as noises and cyber attacks are considered in

Table 1 Comparisons of different IoT communication protocols and services
Technology Protocol Power rating Speed Frequency Coverage
NFC PAN very low 100–400 kbps 13.56 MHz 10 cm
Bluetooth PAN low 2 Mbps 2.4 GHz 0.1–0.25 km
WiFi LAN medium 54 M–1 Gbps 2.4 and 5 GHz 50 m
Zigbee LAN very low 250 kbps 2.4 GHz 10–100 m
WiMax WAN high 11–100 Mbps 10–66 GHz 50 km
LoRa WAN high 50 kbps 868/915 MHz 25 km
4G WAN high 12 Mbps 800, 1800, 2600 MHz 10 km
5G WAN high 3.6–10 Gbps 600 MHz–86 GHz 10 km
NB-IoT WAN high 250 kbps 900 MHz 35 km

 

Table 2 Performance comparisons of 4G and 5G systems for IoT-based cyber-physical applications
Features 4G performance 5G performance
mobility 350 km/h 500 km/h
speed 0.01–1 Gbps 0.01–20 Gbps
latency 10–100 ms 1–50 ms
energy efficiency 0.1 mJ/100 bits 0.1 mJ/100 bits
device density 100 k/km2 1000 k/km2

spectral efficiency 1.5 4.5
 

Fig. 3  Key challenges of the IoT-based CPSs
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estimation process. Without considering these impairments, the
estimated system states cannot reflect the true system states.
Consequently, it can cause social, economic, and national
problems depending on impairments [29, 30].

iv. Intelligent sensors and actuators design: Generally speaking,
designing smart sensors and actuators are key to be
interconnected for sustainable, clean, and green modern
society. There are different types of sensors such as
temperature, pressure, humidity, and phasor measurement units
available in real time [31–33]. However, each sensor can do
the particular task and cannot perform other sensing activity at
all [34]. Therefore, the researchers and industry people will
need to categorise sensors based on the specific characteristics
and applications. In this way, it will not be so difficult to
design the universal sensors in future. Unfortunately, there is a
little effort to design such sensors and actuators so far. As the
IoT can connect anything and anytime, so IoT expects to
design the universal sensors which can sense anything [34, 35].

v. Find suitable cross-domain application: There is a significant
research gap between practical application and academic
research in the IoT-based CPSs. In biomedical engineering, the
IoT can be used for signal transmission whereas they are not
well familiar in this emerging technology [36–38]. Similarly,
the machine learning tools such as deep learning and
reinforcement learning can be used for CPS state estimation in
data-driven approach [39–41]. Howsoever, there is a
significant cross-domain research gap between electrical and
computer engineering.

vi. Optimal smart meter design for IoT-based CPS modernisation:
In order to modernise the CPS, the placement and number of
meter can play a vital role for the utility operator. Typical
example of CPSs is the electricity, water, and gas meters [42–
45]. However, it is very difficult to find proper location and
number of optimal smart meters installation. Moreover,
designing the low-cost smart meters and installation are also
the changeling tasks for developing counties.

vii
.

Smart antenna design for IoT-based CPS: The antenna can
play a vital for CPS signal transmission and reception.
Different applications require diverse specification and
requirements. For biomedical application, it requires small and
wearable antenna whereas the communication industry
requires high gain and directivity [46–48]. Therefore, the
antenna should design for specific IoT applications, and there
is an open challenge to design an universal antenna.

vii
i.

Design complexity: When designing the IoT-based CPSs, the
algorithm and physical structure should be low complexity and
affordable connectivity to the low-power devices as shown in
Table 1. In order to do this, the signal processing, computer
science, and mechanical engineering communities will need to
take necessary action to design such a cyber-physical model
and algorithms [29, 49, 50].

ix. Interoperability: It is most common problem in today's society
that designed software and hardware are not compatible with
other models, companies, and generations. One of the main

targets of IoT is the sustainable future, so designing IoT-based
CPSs should be compatible with other generations, standards,
technologies, and models [11, 51].

After identification of the challenges, one will need to know the
potential research directions.

4 Future research directions
We present a diverse set of future research directions such as
practical implementation, distributed state estimation, real-time
data collection, and system identification from data time. The key
future research directions are shown in Fig. 4. The key technical
challenges are described as follows:

i. Implementation of CPSs: It can be seen that the most of
algorithm is verified through numerical simulations. In order to
practically implement and place in the market, it will require
money and support for sustaining the product and services.
Efforts should be concentrated in developing reliable state
estimation algorithm considering fading channel and cyber
attacks into consideration [52–54].

ii. Developed distributed CPSs and algorithms: Most of the CPSs
are centralised so it will need to deregulate and propose
distributed algorithms. The distributed system provides low
computational complexity and easy to diagnosis, if needed [55,
56].

iii. Effective communication infrastructure design: Designing a
reliable IoT communication infrastructure is one of the open
research challenges [54, 57, 58]. The facility of IoT is
significantly increased in the recent years, so designing two-
way effective communication infrastructure is not only
requirement but also a challenging task [33, 59]. In order to
design IoT-based digital communication systems, the sensing
analogue signal is firstly need to be digitised. Interesting, the
IoT can integrate any physical smart devices at any time and
their signal is real-value analogue. Therefore, the designing
universal analogue-to-digital converter is one of the future
research directions [60].

iv. Apply machine leaning approaches for CPS modernisation:
Machine learning algorithms such as deep learning and
reinforcement learning can be used for CPS state estimation in
a data-driven fashion [39, 41, 61, 62]. When there is significant
fluctuation or unreliable information, these approaches cannot
be able to perfectly describe and predict the real system [63].

v. Real-time data collection, analysis, and decisions: Generally,
service providers monitor the system dynamics after certain
intervals. For instance, the power system is monitored by every
15 s [31, 64]. Sometimes, it is redundant or inappropriate to
gather large amount of data within this time frame. Basically,
system operators have processing, storage, and resource
limitations. It is better to design a control centre which can
continuously monitor the system dynamics and avoid
unnecessary information for storages.

Fig. 4  Potential research directions of IoT-based CPS
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vi. Developed effective state estimation algorithms: The CPS
states such as synchronous generator states such as rotor angle
and speed are unknown. In order to estimate the cyber-physical
state, the weighted least squared, least mean squared, Kalman
filter, extended Kalman filter, and H-infinity are key schemes
[65–67]. Unfortunately, all of these methods work well when
there are no cyber attacks and packet losses. Considering some
impairments, the cyber-physical state estimation algorithms
will need to develop. When the energy storage is connected to
the CPS system, then the state of charge can be estimated using
signal processing algorithms.

vii
.

Security, reliability, and trusts: The IoT can connect and
provide service to the massive devices and networks, so their
security, reliability, and privacy are the main concern [68]. In
future, one can design a channel coding based reliable IoT
communication network where eavesdroppers can hardly
identify the transmitted bit sequences [69]. Furthermore, most
of the physical systems are non-linear, so the cyber attacks can
be handled accordingly [70, 71]. Moreover, identification of
key vulnerabilities in the communication network serves as
weak entry points for various attacks [21]. Therefore,
researcher can develop reliable communication network with
strong encryption and cryptographic algorithm.

vii
i.

System identification: Due to advancement of information and
communication technology, the physical system can be
recovered from the measurement or output information or
historical data. For example, the electricity market state-space
model is obtained from the historical data [72]. Using the
historical day-ahead electricity data, the electricity market
state-space framework is obtained in [72–74]. Using spectral
density and curve fitting, the physical system is recovered.
Finally, the Kalman filter and H-infinite approaches are used to
match the predicted and estimated states [75, 76]. Similar
approach can be applied to other CPSs such as smart grids and
wireless power transfer systems.

5 Conclusion
In this paper, we have presented a review of recent works along
with research opportunities on the networking aspect of IoT for
CPSs. After identifying several key technical challenges for IoT
system, eight key research directions and potential solutions are
critically summarised. Based on the findings, summarised technical
challenges, research directions, and potential solutions, it is
believed that this paper acts as an informative source for IoT and
cyber-physical researchers.
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