11,001 research outputs found

    Monitoring frequent items over distributed data streams.

    Get PDF
    Many important applications require the discovery of items which have occurred frequently. Knowledge of these items is commonly used in anomaly detection and network monitoring tasks. Effective solutions for this problem focus mainly on reducing memory requirements in a centralized environment. These solutions, however, ignore the inherently distributed nature of many systems. Naively forwarding data to a centralized location is not practical when dealing with high speed data streams and will result in significant communication overhead. This thesis proposes a new approach designed for continuously tracking frequent items over distributed data streams, providing either exact or approximate answers. The method introduced is a direct modification to an existing communication efficient algorithm called Top-K, Monitoring. Experimental results demonstrated that the proposed modifications significantly reduced communication cost and improved scalability. Also examined in this thesis is the applicability of frequent item monitoring at detecting distributed denial of service attacks. Simulation of the proposed tracking method against four different attack patterns was conducted. The outcome of these experiments showed promising results when compared to previous detection methods

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    A Survey of Distributed Intrusion Detection Approaches

    Full text link
    Distributed intrustion detection systems detect attacks on computer systems by analyzing data aggregated from distributed sources. The distributed nature of the data sources allows patterns in the data to be seen that might not be detectable if each of the sources were examined individually. This paper describes the various approaches that have been developed to share and analyze data in such systems, and discusses some issues that must be addressed before fully decentralized distributed intrusion detection systems can be made viable
    • …
    corecore