
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2007

Monitoring frequent items over distributed data streams. Monitoring frequent items over distributed data streams.

Robert Harrison Fuller 1984-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Fuller, Robert Harrison 1984-, "Monitoring frequent items over distributed data streams." (2007).
Electronic Theses and Dissertations. Paper 470.
https://doi.org/10.18297/etd/470

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/470
mailto:thinkir@louisville.edu

MONITORING FREQUENT ITEMS OVER DISTRIBUTED DATA STREAMS

By

Robert Harrison Fuller

B.S., Indiana University Southeast, 2005

A Thesis

Submitted to the Faculty of the

Graduate School of the University of Louisville

in Partial Fulfillment of the Requirements

for the Degree of

Masters of Science

Department of Computer Engineering and Computer Science

University of Louisville

Louisville, Kentucky

May 2007

MONITORING FREQUENT ITEMS OVER DISTRIBUTED DATA STREAMS

By

Robert Harrison Fuller
B.S., Indiana University Southeast, 2005

A Thesis Approved on

April 3, 2007

By the following Thesis Committee:

Dr. Mehmed Kantardzic, CECS (Thesis Director)

Dr. Anup Kumar, CECS

Dr. Julius Wong, ME

 ii

ACKNOWLEDGEMENTS

The author would like to acknowledge his thesis director Dr. Mehmed M.

Kantardzic. This thesis would not be possible without his continued guidance,

encouragement, and insight. The author would is also like to convey his sincere

appreciation to the reading and examination committee members. The author would like

to recognize USA Funds for providing financial support throughout his graduate studies.

Finally, appreciation is given to the family members of the author for provided love and

support throughout the author's life.

iii

ABSTRACT

MONITORING FREQUENT ITEMS OVER DISTRIBUTED DATA STREAMS

Robert H. Fuller

April 3, 2007

Many important applications require the discovery of items which have occurred

frequently. Knowledge of these items is commonly used in anomaly detection and

network monitoring tasks. Effective solutions for this problem focus mainly on reducing

memory requirements in a centralized environment. These solutions, however, ignore the

inherently distributed nature of many systems. Naively forwarding data to a centralized

location is not practical when dealing with high speed data streams and will result in

significant communication overhead.

This thesis proposes a new approach designed for continuously tracking frequent

items over distributed data streams, providing either exact or approximate answers. The

method introduced is a direct modification to an existing communication efficient

algorithm called Top-K Monitoring. Experimental results demonstrated that the proposed

modifications significantly reduced communication cost and improved scalability.

Also examined in this thesis is the applicability of frequent item monitoring at

detecting distributed denial of service attacks. Simulation of the proposed tracking

iv

method against four different attack patterns was conducted. The outcome of these

experiments showed promising results when compared to previous detection methods.

v

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER

1. INTRODUCTION TO DATA STREAMS ... 1

1.1. Background ... 1

1.2. Formal Problem Statement ... 3

1.3. Goals ... 7

1.4. Organization of Thesis .. 8

2. LITERATURE REVIEW .. 9

2.1. Single Stream Approaches .. 9

2.2. Centralized Monitoring Approaches ... 14

2.3. Distributed Monitoring Approaches ... 15

3. FREQUENT ITEM MONITORING ... 21

3.1. Overview .. ~ 21

vi

3.2. Exact Frequent Item Monitoring .. 22

3.3. Approximate Frequent Item Monitoring .. 30

3.4. Recently Frequent Item Monitoring ... 37

4. EXPIREMENTAL EVALUATION39

4.1. Data Sets and Monitoring Description ... 39

4.2. Input Parameter Summary .. 41

4.3. Performance Criteria ... 43

4.4. Experimental Results .. 45

4.5. Comparison ... 53

5. APPLICATION: DETECTING DDoS ATTACKS .. 56

5.1. Introduction ... 56

5.2. Detecting DDoS Attacks ... 58

5.3. Data Sets ... 59

5.4. Performance Criteria ... 62

5.5. Experimental Results .. 63

6. CONCLUSIONS AND FUTURE WORK .. 65

6.1. Conclusions ... 65

6.2. Future Work .. 66

REFERENCES .. 68

APPENDICES ... 73

vii

CURRICULUM VITAE .. 80

viii

LIST OF TABLES

TABLE PAGE

1. Lawrence Berkeley Laboratory example data .. .40

2. Decrements observed in the MG algorithm ... 51

3. Memory requirements for approximate tracking ... 52

4. Comparison results with Top-K Monitoring .. 55

5. DDoS detection evaluation results ... 63

6. Comparison of multiple DDoS detection systems ... 64

ix

LIST OF FIGURES

FIGURE PAGE

1. Single-level hierarchical architecture4

2. The MG Algorithm .. 10

3. Example problem using :\-counter. .. 14

4. Multi-level hierarchical communication architecture .. 17

5. Reallocation termination after Phase 2 .. 27

6. Reallocation termination after Phase 3 .. 28

7. Communication cost for Berkeley TCP data set..47

8. Communication cost for '98 World Cup data set47

9. Communication cost over time for '98 World Cup data set49

10. MG Algorithm average precision .. 50

11. Output quality of Top-K Monitoring on Berkeley TCP data set 54

12. DDoS attacking pattern .. 57

13. Constant and pulsing rate attack pattern .. 60

14. Increasing and gradual pulsing attack pattern .. 61

x

1.1 Background

CHAPTER 1

INTRODUCTION TO DATA STREAMS

Recent years has shown a rapid increase in applications requiring the processing

of data streams. Data streams are sequences of data that arrive continuously over time

(Cohen and Strauss, 2004). Examples include network traffic data, stock tickers, click

streams, and data generated by wireless sensors. In each of these examples the data

stream may be represented as a sequence of tuples containing destination addresses, stock

quotes, environmental readings, etc.

Data streams from a variety of application domains generally exhibit very similar

properties which yield interesting challenges. First the data generally arrives at a very fast

pace, sometimes as fast as several gigabytes a second (Lee and Ting, 2006). This requires

real-time processing of each update tuple to keep pace with the rate of the stream. Second

the final length of the stream is often times not known in advance. As a result, it is

modeled as a never-ending or unbounded stream (Zhu and Shasha, 2002). Since

processing must be done in real-time, storing to a secondary storage disk is not feasible.

Additionally, only a limited amount of a main memory is available. Third the data is

usually distributed in large networks (Sun, Papadimitriou, and Faloutsos, 2006). Thus

communication must be limited to observe any imposed network constraints. Finally,

processing results are generally given to the user continuously, always reflecting the

current state of the data stream (Babcock and others, 2002).

A common data stream processing task is to find items in the data which have

occurred frequently. An item is defined to be frequent if it accounts for a high percentage

of the total number of occurrences seen so far. Important data stream applications of

frequent item analysis include:

1. Web Advertising: Revenue may be increased by recognizing users who

frequently click advertisements and displaying Pay-Per-Click advertisements

when they visit your site (Metwally, Agrawal, and Abbadi, 2005).

2. Network Flow Management: Generally only a few flows will account for a

large portion of bandwidth in a network. Knowing these flows can be used to

allocate bandwidth more fairly (Stanojevic).

3. Detecting Network Anomalies: Some network attacks exhibit frequent

characteristics. For example, worms can be detected by determining

frequently occurring substring patterns in traffic flows (Kim and Karp, 2004).

Another example includes the detection of distributed denial of service

(DDoS) attacks. Recently, methods have shown that by identifying destination

addresses which have received a large number of packets over a given time

can be used to detect DDoS attacks (Akella and others, 2003; Manjhi and

others, 2005; Sekar and others, 2006).

In this thesis we consider the problem of monitoring frequent items over

distributed data streams. The term monitoring, means that the up-to-date list of frequent

items are displayed to the user continuously in real-time. This problem inherits many of

2

the data stream processing challenges described previously. Due to the unbounded nature

and high data rates of streams, we must propose a method that is both space and time

efficient. Additionally in this scenario, frequently occurring items must be determined

from multiple data streams originating from dispersed sources. As a result,

communication costs must be considered.

1.2 Formal Problem Statement

In the following subsections we describe the distributed architecture used in our

monitoring approach. This architecture is the most commonly observed in prior work and

represents a large number of real world networks (Babcock and Olston, 2003; Cormode

and Garofalakis, 2005a; Garofalakis, 2005b; Cormode and others, 2005; Keralapura,

Cormode, and Ramamirtham, 2006). Additionally, we will formalize our representation

of the data streams observed at each distributed site. Finally, we will provide a formal

definition to the frequent items problem and it variations. The notation introduced in

these sections will be used throughout the remainder of this thesis.

1.2.1 System Model

The distributed environment used in our method has been defined as a single-level

hierarchical architecture (Babcock and Olston, 2003). It consists of m + 1 nodes and m

distributed data streams. Of the nodes, N1, N2, ..• , Nm are used for summarizing the m data

streams and are called monitoring nodes. Node No is a specialized coordinator node. The

coordinator node is responsible for displaying the set of frequent items over the union of

the m distributed data streams. As in previous work, communication is conducted

3

amongst the monitoring nodes and the coordinator. There is no direct communication

between any two monitoring nodes (Babcock and Olston, 2003; Cormode and

Garofalakis, 2005a; Cormode and others, 2005). A schematic of this architecture can be

seen in Figure 1.1.

Each of the distributed data streams Sj, S2, ... , Sm, is used as input to

corresponding monitoring nodes N j , N2, ... , Nm• The data streams consist of a sequence of

tuples ordered by time of occurrence. Each tuple is of the form (OJ, t), where OJ is the

unique identifier of a specific item of interest pulled from a finite (but possibly large) set

of allowable identifiers U, and tj is the timestamp of the tuple. Identifiers may be repeated

any number of times in a data stream. An example of an input stream, corresponding to

monitoring node Nj, may be Sj = {(2, 0.024), (2, 0.029), (1, 0.050), (0, 0.056,)} where U

= {O, 1,2, 3}.

Coordinator Node

Frequent Item Set

User

FIGURE 1.1 - Single-level hierarchical architecture.

4

As stated, each monitoring node maintains a summary of its corresponding data

stream. This summary is made by managing a set of frequency counts C = {c 1,i, C2,i, ... ,

cn.d, where each Cj.i E C corresponds to an item identifier from the set U. Initially each

frequency count is equal to zero, and for each input tuple (OJ, tJ> to Ni, Cj.i is incremented

by one. Therefore, each frequency count in the set C maintains the number of

occurrences of an item in the data stream Si on monitoring node M. To extend the

previous example, C] = { 1, 1, 2, O}.

1.2.2 Frequent Items Problem

The purpose of the monitoring structure discussed above is to monitor frequent

items over the union of the distributed data streams. Given an item OJ and corresponding

counters {cj,l, cp, ... , Cj,m }, we call OJ frequent if LlS;iS;m Cj.i ~ sN, where s E (0, 1) is a

user defined support parameter and N is the accumulative frequency of all observed

items. The set of all frequent items F, therefore, contains all items which have occurred

across the union of the m data streams more than s% of the total number of item

occurrences.

1.2.3 Approximate Frequent Items Problem

Due to the unbounded nature of data streams it is impossible to store them in main

memory or even secondary storage. This has motivated the creation of a variety of

summary data structures which sacrifice correctness and provide approximate solutions

(Li, Lee, and Shan, 2005). These summary data structures require only a limited amount

5

of memory, but provide only approximate frequency counts. To solve the frequent items

problem with approximate frequencies, an extension has been proposed called the c

deficient frequent items problem. The definition for this problem we adopted comes from

the work of Manku and Motwani (2002).

To extend the previous definition given in Section 1.2.2, the c-deficient frequent

items problem allows a degree of error on the frequency counts which is bounded by a

user defined error tolerance parameter c: « s. The membership of an item in the set F is

modified with the following requirements:

1. Those whose true frequency exceeds sNare in the frequent item set.

2. No item whose true frequency is less than (s - c:)N is in the frequent item set

3. Frequency counts are under counted or over counted by at most c:N.

The resulting membership test derived from these three points is determined by

whether the frequency counts are over estimated or under estimated. If the items are

under estimated, an item is called frequent if Ll~i~ Cj.i ;::: (s - c:)N, where each Cj.i is an

approximate frequency count underestimating the true frequency of OJ by at most G N.

1.2.4 Top-K Elements Problem

The top-k elements problem is very similar to that of finding frequent items.

Given a set of items 0], ••• , On and corresponding frequency counts, we create a ranked

list sorted by non-increasing frequency. We return the set which contains the k most

occurring items, where k is a user defined parameter bounding the size of the list.

6

The top-k elements problem can additionally be used to determine frequent items.

For a given support parameter s, there can be at most + frequent items (Cormode and

others, 2005). Therefore, by returning the k most occurring items, where k = +, we are

guaranteed to have all items OJ E F. However, it is not the case that all reported items are

frequent. That is, there may also be a large number of items OJ E F reported.

1.3 Goals

The goal of this thesis is to study prior solutions and propose a new monitoring

system for reporting the frequent item set over the union of multiple distributed data

streams. If more recent item occurrences are to be weighed more than older occurrences,

extensions must be proposed to allow for reporting only recently frequent items. In both

cases the system must provide results with exact precision using minimum

communication overhead.

In many practical data stream applications, memory requirements are also a major

concern. As a result, appropriate memory management policies must be proposed which

can be easily integrated into all nodes within the monitoring system. In this case the

system may only be able to provide approximate results. We must ensure that these

approximations reach a high degree of quality with appropriate empirical analysis.

The final goal of this thesis is to provide a preliminary analysis into the

applicability of frequent item monitoring at detecting DDoS attacks. This would include

the analysis of the proposed system against a variety of different attack patterns.

7

Comparisons against other known detection methods will be used to serve as a

benchmark to measure the detection quality of the system.

1.4 Organization of Thesis

Chapter 2 discusses prior solutions for solving the frequent items problem and the

similar top-k elements problem. In Chapter 3 we introduce our approach for monitoring

frequent items over distributed data streams. We evaluate our method in Chapter 4 based

on a series of defined criteria. Chapter 5 examines the applicability of our method for

detecting DDoS attacks. Finally, Chapter 6 gives closing remarks and future directions.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Single Stream Approaches

Most prior work on monitoring frequent items focuses on creating stream

summary data structures. These data structures require a fixed amount of memory but

sacrifice correctness in the results. That is, the majority of these solutions address the £

deficient frequent items problem. The summary data structures proposed in prior work

can be broken up into two categories:

1. Counter-based Techniques

2. Time-Sensitive Techniques

2.1.1 Counter-based Techniques

Counter-based techniques work by maintaining a subset of counters smaller than

lui. These methods keep the monitored subset of items small by using various techniques

depending on the algorithm (Metwally, Agrawal, and Abbadi, 2005). Each technique has

the common characteristic of bounding memory required and providing strong guarantees

on approximations based upon a user define error parameter and thus address the £

deficient frequent items problem directly.

9

One of the earliest known f.-approximate counting techniques was created by

Misa and Gries (1982). Their algorithm required O(t) space and 0(1) amortized

processing time per update tuple. The same algorithm was rediscovered independently by

Demaine et al. (2002) and Karp et al. (2003). They improved upon the algorithm,

allowing 0(1) worst case processing time per element by arranging counters in sorted

order using a differential encoding.

The original Misa-Gries (MG) algorithm did not specify a user defined error

tolerance. Rather, the algorithm only handled the special case where the error tolerance

was equal to the support. Recent work has shown, however, that that the algorithm can be

adapted to handle general error tolerance values (Lee and Ting, 2006). With these

extensions we enhance the pseudocode representation of the MG algorithm provided in

(Karp, Shenker, and Papadimitriou, 2003) as shown below.

Let XlI X21 ••• , XN be a stream of items.

Let Counters be a list of integers indexed by an item Xi.

For i = 1 to N do

If Xi is in Counters Then

Counters [Xi] = Counters[Xi] + 1

Else

Create a counter for XiI and set Counters [Xi] = 1

If I Counters I >1 / £

For each c in Counters

Counters[c] = Counters[c] - 1

If Counter[c] = 0 Then Remove Counter[c]

FIGURE 2.1 - The MG Algorithm

10

Essentially the algorithm maintains a set of counters for each item, decrementing

1 + 1 counters when there are more than 1 counters in memory. Since there are N items

in the data stream, we can decrement the counters by at most NI(1 + 1) < eN times and

hence all counters have error of at most eN (Lee and Ting, 2006). The traditional

approach of reporting all frequent items which are under counted, is to report all items

with frequency greater than or equal to (s - e)·N.

Around the same time the MG algorithm was being re-discovered two additional

counting techniques were proposed by Manku and Motwani (2002). The first one, called

Sticky Sampling is a probabilistic E-approximate counting technique which can provide

frequency counts under counted by at most e·N with probability of 1 - O. Their method

works by dividing the data stream up into segments each with an associated non

decreasing sampling rate. When a new item is observed it is added to the list of counters

based on this sampling rate. At the end of each segment, when the sample rate changes,

for each counter we toss a coin decrementing its value by one for each unsuccessful toss.

If at any time the value of the counter becomes zero we remove it from memory.

In the same paper Manku and Motwani (2002) proposed a second method, which

is the more popular of the two, called Lossy Counting. Lossy Counting is a deterministic

E-approximate counting technique which requires O(1·log(e'N)) space, but in practice

performs better on skewed data than both the MG algorithm (Arasu and Manku, 2004)

and Sticky Sampling (Manku and Motwani, 2002). Their method works by dividing the

data stream up into r rounds of width 1. When a new item is observed in a round it is

added to the list of counters, and given the value of the previous round r - 1. At the

11

beginning! of each round, counters with frequency less than or equal to r are removed

from memory.

More recently a new counting technique has been proposed by Metwally et al.

(2005) called Space-Saving. This technique requires at most } counters at any given

time. Their method works by storing each counter in a list sorted in order. For each new

item observed a counter is added until there becomes 1 counters in the list. After this

point is reached, each remaining new counter replaces the counter of the least occurring

item currently in the list. By managing new counters in this way, frequency counts are

over counted by at most e·N. Recently, work by Liu et al. (2006) enhanced this approach

by identifying all counters with frequency less than e·N and replacing the oldest counter.

The main contribution of their work was the creation of a method in which to store time

informatidn while using little additional space. They did this by devising a method called

fractioniz(ltion, where they added the inverse sum of the natural log of each timestamp

for an item to its frequency count. They thus defined the oldest counter as the counter

with the smallest sum of timestamps.

2.1.2 TiIjne-Sensitive Counting Techniques

Mdst recent work on time-sensitive frequency counts utilizes the concept of a

sliding window model. Sliding windows consist of the last e item occurrences observed

in a data stream. The two most common types define e as either a fixed value (fixed-sized

sliding window) or as variable (variable-sized sliding windows). Each of these two

12

fundamental types can additionally be extended to represent a variety of other sliding

window models, including time-based sliding windows (Arasu and Manku, 2004).

Th~ first deterministic £-approximate counting technique for finding frequent

items oven sliding windows was proposed by Arasu and Manku (2004). Their algorithm

required C)(1·log2 1) space and O(1·log 1) processing time per update tuple for a

fixed-size ~liding window. The algorithm works by creating a series of copies of the data

stream, eaph broken up into segments. The size of each segment varies between the

copies but segment sizes remain uniform within. Each individual segment is constructed

by running an instance of the MG algorithm. Frequency counts of items are determined

by examining a selective number of these segments in the different copies, which are

management carefully to guarantee approximate results.
, .

MQre recently Lee and Ting (2006) have proposed a new method which is more

efficient. lheir method requires only O(1) space and processing time per update tuple

for repres~nting fixed-size sliding windows. Additionally, they expanded their method

using a similar approach by Arasu and Manku (2004) to handle variable-sized sliding

windows Ulsing O(1·log(c.N)) space and processing time.

Unlike the previously described algorithm, their method uses the MG algorithm

directly. Tv maintain frequency counts over a sliding window they replaced each counter

of the MO algorithm with a special A-counter. Briefly a A-counter represents a data

stream as a[sequence of bits each with a labeled position starting at position one. For each

position tHat the item represented by the counter occurs, a I-bit is recorded at that

position. l1hese positions are grouped together into A sized blocks indexed sequentially

13

starting a~ index one. A block is defined as significant if it falls in or overlaps with the

current sHding window and contains the (iA)th I-bit (or the (iA)th occurrence of the item)

where i ~ 1. The value of the A-counter is thus defined as A·IQI + I where Q is the list of

significant blocks and I is the number of ones (or occurrences) observed since the last

significant block. For example in Figure 2.2, if we define A = 2 and the size of the

window a~ 10, the list of significant blocks Q = {3, 5}. The resulting value of the A-

counter is Ithus equal to five.

po$ition 1 2 3 4 5 6 7 8 9 10 11 12

bitlstream 1 1 1 0 0 1 1 0 1 0 1 0
bldck 1 2 3 4 5 6

FIGURE 2.2 - Example problem using A-counter

2.2 Cehtralized Monitoring Approaches

Mqny monitoring systems process multiple distributed data streams by forwarding

update tuples to a centralized node (Babcock and others, 2002). At this node each

received update tuple can be modeled as only a single data stream in a straightforward

fashion. 1l'his is beneficial, since a large number of single stream frequent item

monitoring methods have been proposed (see Section 2.1). Most of these methods are

optimized Ito require minimal space and processing time. Despite these optimizations,

however, the response time of a centralized approach may still be long. It is likely that the

merged siljlgle stream will be very large, thus requiring a large amount of data to be

processed. Additionally, forwarding each data stream will result in heavy communication

14

congestion and in some cases it is not feasible (Aggarwal and others, 2006). For example,

examine t~e case where the data streams are being collected by distributed wireless

sensors. Ifl. this environment the power consumption for each sensor is dominated by the

amount communication involved (Madden and others, 2003). Thus forwarding the data

streams wW likely result in low battery life for each sensor.

2.3 Di~tributed Monitoring Approaches

To : alleviate some of the short comings of the centralized monitoring approach, a

variety of distributed solutions have been developed. All these solutions have two

important characteristics which make them more efficient. First each distributed

monitoring node conducts some of the processing locally. Second communication is only

conducted when certain criteria is reached or when results are requested. Additionally,

when communication does occur, only a concise summary of the local data stream is

transmitted. These two characteristics allows distributed monitoring approaches to both

reduce the! amount of communication needed and decrease the processing time by

utilizing distributed resources.

Pri<1>r work on finding frequent items using the distributed approach can be broken

into two categories. The first category consists of methods defined as one-time query

approaches,. One-time query approaches only provide results once over a point in time

(Babcock a'nd others, 2002). These methods are not designed for continuous monitoring,

but can be irepeated within short time intervals to simulate results (Babcock and Olston,

2003). The: second category consists of methods defined as continuous query approaches.

15

Continuo~s query approaches provide at any time, the results equal to the output of a one

time query approach (Golab and Ozsu, 2005).

2.3.1 Ode-Time Distributed Approaches

Th~ recent one-time query approach by Manjhi et al. (2005) addressed the

problem M determining time-sensitive (recent) frequent items over distributed data

sources. they did this by installing an £-approximate counting technique at each

monitorin~ node, and transmitting local frequency counts every T time units to a

centralized node. Upon receiving the local counts, they are combined with previously

received cpunts. More emphasis is placed on recent item occurrences by deprecating

previouslyireceived counts in an exponentially decaying fashion.

Th¢ authors realized that transmitting all frequency counts to a centralized node

would res41t in excessive communication cost. Additionally, if there are a large number

of monitOIjing nodes, the centralized node will be overwhelmed by the amount of data

received. To address this issue, they proposed using a multi-level hierarchical

communic~tion architecture to reduce the load on the centralized node. A multi-level

hierarchicaiI communication architecture is very similar to the single-level architecture

introduced jin Section 1.2.1. The only difference is the introduction of intermediate nodes

between tHe monitoring nodes (defined as leaf nodes) and the centralized coordinator

node (defined as the root node) (Cormode and Garofalakis, 2005b). In Figure 2.3 we give

an exampld of a three-level hierarchical communication structure.

16

Coordinator Node(RooQ

Intermediate Nodes

Monitoring Nodes
(Leaves)

Frequent Item Set 1----.. User

....

••

Ss

FIGURE 2.3 - Multi-level hierarchical communication architecture.

TM intermediate nodes were used by the authors to additively combine the

frequency 'counts received from their child nodes. Additionally, they introduced the

concept of a precision gradient to reduce communication load on any single link.

Roughly speaking, the £-approximate counting techniques installed on each leaf node

(monitoring node) undercounts the true frequency of an item. Frequencies of value zero

do not need to be transmitted. Instead of introducing the maximum amount of error at the

leaf nodes,! they varied the degree of error tolerance at each level. The authors provided

strategies for setting the error tolerance at each level, and demonstrated that their

strategies Worked well for reducing both load on the coordinator node and reducing load

on any single communication link.

SeV1eral approaches for solving the similar problem of finding the top-k items in

the distributed data stream environment have been introduced. All these methods have

shown to successfully reduce communication cost. One related group of algorithms is the

17

threshold pased algorithms described by Yu et ai. (2005) in their recent work. Each of the

algorithm$ described (TPUT, TPAT, TPOR, and HPT) requires three steps which are

generalize~ as follows:

1. : Step 1: The local top-k list of each monitoring node is collected at a

centralized node.

2. Step 2: The information gathered at the centralized node is used to assign each

monitoring node a threshold or supplies it with information needed to create a

• threshold. Each monitoring node responds with a list of items, each with

i frequency greater than the given threshold. The response is then used to create

• a top-k candidate set.

3. ! The exact frequencies are collected for each item in the candidate set and the

top-k items are reported.

Tht goal of each of these steps is to gather successively more information about

the items ~bserved in the network to reach a final consensus on the global top-k set. This

is in contr~st with simply forwarding all item frequencies to a centralized node. Ideally

the thresh~ld based approaches will only gather information on a subset of items, thus

reducing tljle amount of communicated when compared to the simpler approach.

2.3.2 Coptinuous Distributed Approaches

Th¢ most recent work to address the issue of continuous monitoring over

distributed! data sources was the work of Cormode et al. (2005) which was later

expanded. !The expanded approach required O(12 -log t) space and O(log t) time per

18

update tuWle, where c is a user define error tolerance and t5 is a probability of failure

(Cormode! and Garofalakis, 2005a). Additionally, their analysis showed that the worst

case comtilunication cost for their method was comparable with that of periodic one-time

approache~.

Both the methods in (Cormode and others, 2005) and in (Cormode and

Garofalak~s, 2005a) work by maintaining at each monitoring node a summary of the

observed local data stream and a corresponding predication model. Throughout the

monitoring process each monitoring node compares its local summary with its

correspon4ing prediction model. If the prediction model deviates from the actual local

summary by more than a user defined error tolerance, the local summary (and possibly a

new predi~ation model) is communicated to a centralized node. Thus if the prediction

model apptoximates the actual data stream effectively, no communication is needed.

Sinpe the centralized node at all times contains the approximate frequency counts

of all items, this method is able to answer a variety of different queries. Included is the

ability to rrilonitor top-k items and provide a list of heavy hitters. Heavy hitters in this case

is not the: same as the E-deficient frequent items problem. Since we only have the

approximate frequency counts, we return all items which are above s.fl, where N is the

sum of all ~pproximate frequencies which estimates N.

Previously, Babcock and Olston (2003) addressed explicitly the problem of

monitoringl the top-k items in the distributed environment. The basic concept for their

method w~s to maintain at each monitoring node the global top-k set locally.

Conceptua'ly, this was done by shifting the frequencies of items amongst the monitoring
,

nodes. Thi$ shifting was done in the fashion so that the adjusted frequency of each item

19

in the glObal top-k set was greater than the adjusted frequency of any item not in the

global to~-k set. As long as this arrangement of adjusted frequencies remained, the

validity oil the global top-k set sat unchanged.

In ~he event that a monitoring node can no longer maintain the global top-k set, a

process c~lled resolution was initiated. The process of resolution may result in one of two

outcomes:

1. The coordinator determines that the global top-k set has remained unchanged

· by using a subset of frequency counts from the invalidated monitoring node

: and locally stored frequency counts gathered during the process of shifting

item frequencies. In this scenario communication is only required amongst the

coordinator node and the invalidated monitoring node.

2. i. The coordinator calculates the new global top-k set by gathering a subset of

· frequency counts from each monitoring node. Frequencies are then shifted

• once more so that the new global top-k set is now maintained on each

monitoring node. In this scenario communication is conducted amongst the

,coordinator node and all monitoring nodes.

Ad~itionally, Babcock and Olston (2003) introduced another method which they

called the caching approach. This method worked in a similar fashion as the previously

discussed ialgorithm proposed by Cormode and Garofalakis (2005a). The caching

approach r~quired that each monitoring node send the frequency of an item with value

greater thap #z its previously sent frequency to the coordinator node, where £ is a user

defined errbr tolerance and m is the number of monitoring nodes.

20

CHAPTER 3

FREQUENT ITEM MONITORING

3.1 Ov~rview

In this chapter we propose a new monitoring approach for solving the frequent

items pro~lem in the distributed data stream environment. Our method is a direct

modificati~n to the top-k monitoring approach by Babcock and alston (2003), in which

will we c,ll Top-K Monitoring. Briefly, instead of maintaining the global top-k set

locally on fach monitoring node we will maintain the global frequent item set.

In $ection 3.2 we will introduce, in detail, the steps required to maintain the

global freqpent item set locally on each monitoring node. In this section, we will assume

that the go~l is to monitor the exact frequent item set. To provide exact answers we must

store a fre9uency count for each unique item observed in the data stream.

In Section 3.3 we will introduce the modifications needed to provide the

approxima~e frequent item set. The goal in this section will be too reduce memory

requireme~ts by utilizing the summary data structures introduced in Section 2.1.

Although ~op-K Monitoring provided approximate results for the top-k elements

problem, t~ey did not utilize these prior summary structures. As a result, their monitoring
,

approach *ill required a counter for each unique item observed despite introducing

approxima~e results.

21

Fihally in Section 3.4 we will examine ways to solve the recently frequent items

problem. That is, we will examine ways to weigh recent item occurrences more than

older on~s. In the same fashion as the previous sections, we will begin by first

introduci~g ways to provide the exact recently frequent item set and then introduce

methods t¢> provide approximate results with the goal of reducing memory required.

3.2 E~act Frequent Item Monitoring

Th~ frequent item monitoring approach begins with an initialization phase. There

are three ways to accomplish this task. One option is to issue an efficient one-time
!

distributed frequent item query (see Section 2.3.1). The advantage of this approach is that

communicption is only conducted after the initialization time period has ended.

Additionallly, when communication does occur, only a concise summary of the initially
!

observed data stream will be transmitted. Although initial communication cost is minimal

with this a~proach, the same causes for this are also its downfall. That is, the drawback of

this appro~ch is that the monitoring process will not begin until the initialization time

period has Ipassed. It is also not clear how long of an initialization period is needed. If the

initializati4n period is too short, there may not be a significant reduction in

communic~tion when compared to other approaches.

Th~ second initialization option is to forward all update tuples to the coordinator

node. Thisi method is representative of a centralized monitoring approach (see Section

2.2). Since, all update tuples will be forward to a centralized node, initial communication

cost may be high. However, the monitoring process will be able to begin immediately,

since the c¢ntralized coordinator node has full access to the frequency of all items.

22

Fi~ally, the third option is to simply begin our monitoring method immediately.

I

Once the rystem starts, if no items have been observed their frequencies will be zero.
,

I

That is, th~ set of frequent items is empty and does not need to computed. This approach

simplifies !the initialization phase since we do not need to design a specialized method.

Additiona~ly, we do not need to be concerned with setting an initialization time period.

On~e the initialization phase is completed, the coordinator node sends to each

monitor ttie current frequent item set. Similar to Top-K Monitoring, we maintain the

global frequent item set locally on each monitor. To do this we have designed a series of

parameteri~ed constraints (or local requirements) which are installed on each monitoring

node. The~e constraints are used to detect if the global frequent item set has changed over
,

I

time, and qonsists of two core components.

Th¢ first component of the parameterized constraints is a local threshold value Ti ,
I

kept by e~ch corresponding monitoring node M. Initially Ti = 0 and for each item

occurrenc~ observed at node N i , including any observed during the initialization phase,

we incremfnt Ti by the user defined support value s. By incrementing the threshold value

in this fas*on it is clear that Ti = s·!Sd, where lSi! is the number of update tuples in the
I

!

locally obs~rved data stream, or in other words, the total number of locally observed item

occurrencef. If we sum the threshold values for each monitoring node we see that T =

LlsiSm Ti != LISi::;m S·!Si! = soN, since by definition N is the total number of item

occurrence~ observed across all nodes.

Th~ second component of the parameterized constraints is a series of adjustment

factors. T~e notation for these adjustment factors are borrowed from the Top-K

Monitorin& method and are used in a similar fashion (Babcock and alston, 2003). For

23

each iteni OJ and node Ni we define a corresponding adjustment factor 0,i. For the
I

correctne~s of our monitoring method, we require that each adjustment factor meet three

requirem~nts:

1. ' For each item OJ, its corresponding adjustment factors must sum to zero across

all nodes: Losism 0,i = O.

2 .. For each item OF E F, its corresponding adjustment factor stored at the

! coordinator node is greater than or equal to zero: ~,o ~ O.

3. For each item OF ~ F, its corresponding adjustment factor stored at the

coordinator node is less than or equal to zero: ~,o ::;; O.

W~th the two core components of the parameterized constraints described, we can

now showl how they are defined and how they are used to determine if the validity of the

global fre1uent item set has changed. For each item observed at monitoring node Ni , the

following tonstraints are installed:
I

1. ~ If an item OJ EF, then the installed constraint is defined: Cj,i + 0,j ~ h where

i Cj,i is the frequency count of OJ and 0,j is the adjustment factor corresponding
,

to item oj-

2. ! If an item OJ ~ F, then the installed constraint is defined, Cj, i + 0, j < h

If all the p~rameterized constraints hold for each node, then for every OJ E F, LlSiSm Cj,j +

24

W¢ see now that our monitoring method works by dividing the global threshold

sN, whic~ determines which items are frequent, amongst each monitoring node. We then

shift item joccurrences amongst the nodes in the form of adjustment factors. As long as

the adjust~d frequency of each frequent item OJ (Cj,i + 0,;) is above the local threshold

(Ti), or if infrequent below the threshold, on each monitoring node then validity of the

global frequent item set holds. At any time in which a constraint is broken, a process

called reso~ution is initiated.

3.2.1 Re$olution

WHenever a local parameterized constraint is broken on any monitor node a three

phase proc¢ss called resolution is initiated. The purpose of this process is two-fold. First,

the validity of the global frequent item set is checked. If the global frequent item set has

changed, we must notify all monitoring nodes with the list of new frequent items and the

list of all items no longer frequent. Second, at the conclusion of the process, item

frequencieS are shifted in the form of adjustment factors so that all local constraints

become vaJid. The resolution process we use is a modification to Top-K Monitoring. All

modificatic)ns made are described below.

To ~egin the resolution process, in Phase 1, the monitoring node containing the

invalid constraint NJ sends a message to the coordinator. The contents of this message

include: th~ frequency counts, corresponding adjustment factors, and item identifiers of

all items iijvolved in an invalid constraint. Once the information regarding each invalid

constraint ~s sent to the coordinator, the local threshold value Ti is transmitted. Note that

informatiot!t regarding the frequencies of every item which is a member of the frequent

25

item set i~ not needed. The membership of any item in F is independent of any other

item. Thi$ property is distinctive of our monitoring approach. In Top-K Monitoring,

when any! constraint is broken, information regarding all items with broken constraints

and the gl¢>bal top-k items are transmitted to the coordinator. As a result, the message size

is considetably large when k is assigned a large value. As we will see later, the reduced

format of ,our messages will play an important part in reducing overall communication

cost.

On~e all relevant information is gathered at the coordinator node the second phase

can begin.: In Phase 2, the coordinator attempts to determine if the global frequent item

set remains valid. Recall in our definition of adjustment factors, for each item OJ the

coordinator node may have an corresponding adjustment factor O,0 stored locally. As a

result, the icoordinator may be able to sacrifice a portion of it's locally store adjustment

factors to node N/ in order to restore invalid constraints. In order to ensure if this is

possible, fbr each violated constraint the coordinator performs the following validation

tests:

1. If OJ E F then the test performed is Cj, / + O, / + o' ° ~ T/ .

2. If OJ ~ F then the test performed is Cj,/ + O,/ + O,0 < T/ .

If all vali4ation tests pass, then a process called reallocation is initiated (see Section

3.2.2) and : resolution terminates at Phase 2. All interactions involved from initiation of

resolution to termination after resolution is depicted in Figure 3.1. If anyone test fails

during val,dation testing, however, we are not able to determine if the global frequent

item set ha~ changed. At this point more information is needed and the resolution process

continues.

26

Coordinator Node

Phase2
1-----' r-----'
1 Validation! _ ! .:
1 Testing t--------r' Reallocation
1 1 1 1

J I 1 "------ -- ------

Phase 1
Message

Monitor Node I

Reallocation
Response

FIGURE 3.1 - Reallocation termination after Phase 2.

In the final phase of resolution, Phase 3, the coordinator must contact all

remaining monitoring nodes. That is, for each node N; : i :F- I, the coordinator node must

request information regarding each item involved in an invalid constraint. Response

messages in this phase, is of the same format as that received from node NJ in Phase 1.

With complete knowledge on the global frequency of each item involved and the global

threshold, the coordinator node can now determine if the global frequent item set has

changed directly. Notice that Phase 3 can be labeled as a (re)synchronization phase, since

all monitoI1s in the network are contacted and given the new frequent item set (shown in

Figure 3.2). To conclude this final phase, the coordinator initiates the reallocation

process.

27

Coordinator Node

Phase 2 Phase 3 ,-----, r-----1 r-----1
, Validation 1-: ------....t Frequent Set, .' Reallocation ,
, Testing, , Calculation 1-, -----.a, ,
, , , 'I ,
'------ --------' --------

I
I

I
I

\
\

Reallocation \

I
Response \

I
Phase 3 I

Requ$t / Response "
Message I

Monitor Node 1

Phase 1
Message

Monitor Node I

\
Phase 3 \

Request/ Response \
Message \

Monitor Node m

FIGURE 3.2 - Reallocation termination after Phase 3.

3.2.2 Reallocation

Before the resolution process can terminate, adjustment factors must be

reassigned in such as fashion that all constraints are satisfied for the current global

frequent item set. This requires that item occurrences must be rearranged amongst all the

nodes involved in the resolution process. Borrowing from Top-K Monitoring, we call

these set af nodes 11 the participating nodes. If resolution terminated after Phase 2, then 11

= {NI• No}, otherwise, 11 = {No, Nl , ... , Nm} (Babcock and Olston, 2003). The process

responsible for these reassignments is called reallocation. Like resolution, this process is

a modification of the same process found in Top-K Monitoring. The process and changes

made are mow described.

The first step of reallocation is the summation process of all available

information. That is, we sum the value of each available adjusted frequency (frequency

plus the adjustment factor) for a given item involved in an invalid constraint.

28

Additionally, we sum all threshold values received from monitoring nodes in 11. If

reallocation was initiated by Phase 3 of resolution, then the summation process will give

us the global frequency for each item and the global threshold. On the other hand, if it

was Phase 2 that initiated reallocation, then we only have the partial frequencies of each

item and the threshold of N/. Since only adjustment factors are stored at the coordinator,

the partial frequencies in this case will be equal to Cj,/ + 0,/ + O,0, for a given item OJ.

Once summation is completed, we calculate the distance !J.j of each aggregated frequency

from the aggregated threshold.

The second step of reallocation is the "tightening" process. For each monitoring

node ME 11 and item OJ, we assign a new adjustment factor O'j,i so that that the adjusted

frequency is equal to the local threshold value. Doing this step alone is enough to

guarantee that each item in the global frequent item set will have valid constraints, since

the adjusted frequency Cj,i + O'j,i = Ti , for any given item OJ and monitoring node Ni E 11

involved in the process.

The final and third step, assigns a portion of !J.j to each new adjustment factor

assigned in the previous step. The amount added is based on an allocation parameter 0 :5

Fi < 1 corresponding to each node Ni. Allocation parameters are defined in such a fashion

to control the amount of !J.j allocated to each node and is required that LO:S:i::illJ Fi = 1. This

notation is similar to that of Top-K Monitoring with the exception that Fo::t: 1. That is, we

can not assign !J.j entirely to the coordinator node. Any item OJ E F must have a value less

than its local threshold. As a result of this requirement and the assignments made in the

29

previous step, we must therefore assign a portion Ilj to the new adjustment factors in

order for all constraints to be valid.

Given the description above, the reallocation procedure can be expressed formally

with only two expressions.

1. Ilj = LiEll Cj,;+ LiEll 4,; -LiEll Ti

2. 8 j,i = Ti - Cj,i + Frllj

The first expression represents the summation process, while the second expression

represents final steps. For each item OJ involved in a violated constraint and node in 11,

both expressions are evaluated to determine the new adjustment factor 8 j,i where i E 11

represents node N i . Comparing these two equations to those used in Top-K Monitoring

will show that the reallocation method originally designed can be re-used. Assigning the

parameters used in Top-K Monitoring appropriately will result in the definitions given

above.

3.3 Approximate Frequent Item Monitoring

In the previous section we introduced a modification to Top-K Monitoring for

continuously tracking the exact global frequent items. In order to allow exact solutions,

counters for each unique item observed must be kept. The value of each counter must

represent the true frequency of its corresponding item at all times. If the number of

unique items observed in the data stream is large, this will result in impractical memory

requirements. For example, consider the problem of tracking frequent users to a website

based off the user's IP address. With the new IP version 6 addressing scheme it is

30

possible to have up to 2128 or 3.4.1038 unique IF addresses, and thus a large number of

corresponding counters (Hinden and Deering, 2006).

To reduce and bound memory requirements for our monitoring approach, we

reviewed a number of summary data structures (See Section 2.1.1). Each of these

summary structures reduces memory requirements at the cost of providing approximate

frequency counts. If we can integrate one of these structures into our monitoring nodes,

then this would allow us to bound and reduce memory requirements across the network.

However, integrating these structures into our monitoring nodes will only allow our

method to provide approximate results or the e-deficient frequent items.

3.3.1 Summary Structure Selection

To decide which summary data structure to integrate into our monitoring nodes,

we referenced the work of Metwally et al. (2005). As previously discussed, the authors

introduced a new counter-based summary structured called Space-Saving. Also included

in their work, however, is an extensive comparison of their proposed method with two

other summary data structures. These two methods included the MG algorithm and

another summary structure called GroupTest. The results of their comparisons indicated

that the MG algorithm consistently ran faster and used five times less space than the

Space-Saving method. However, the MG algorithm produced a significantly larger

number of false positives. That is, it identified a large number of items as frequent which

was not frequent in reality. Of the three techniques analyzed, Space-Saving produced the

fewest false positives. Therefore, if the quality of the results is the leading factor in our

selection process, Space-Saving is the likely candidate to use to integrate into our

31

monitoring nodes. However, a quick observation of the MG algorithm shows that we can

greatly improve upon the quality its results.

Recall, from Section 2.1.1, that in the single stream approach if a new item is

observed and there are more than k counters currently in memory, the MG algorithms

proceeds to decrement all counters by one. These decrements account for the error

introduced in each frequency count. The maximum number of decrements was

determined to be c·N. That is, each frequency count is at most under counted by cN (Lee

and Ting, 2006). Finally, a frequent item was defined as any item which has frequency

greater than or equal to (s - c) N.

Let j define the true frequency of an item which is frequent, we see that if the

frequency is undercounted by the maximum amount, thenj - cN;::: sN - cN or simply j;:::

sN. However, in practice this worst case is observed rarely. That is, it is unlikely any

counter is undercounted by cN, but rather undercounted by a value less than cN. From

this observation we modify the threshold used by the MG algorithm to report all items

with frequency greater than or equal s N minus the number of decrements. With this

modification in the threshold we will see that the quality of the MG algorithm is now

comparable to that of Space-Saving. Additionally, we saw that the MG algorithm out

performed Space-Saving in all other parameters. Thus, we selected this counting

technique to integrate into our monitoring nodes.

The integration of the MG algorithm into our monitoring nodes requires two

steps. The first step requires that we now maintain the frequency counts in the matter

required by the MG algorithm. The second step is that we must redefine the local

32

threshold values. For monitoring node Ni we now define the local threshold Ti as the

number of item occurrences observed locally, minus the number of decrements

introduced locally. More formally, Ti = S·ISil - di where di is the number of local

decrements. Similar to our previous analysis, if we sum the threshold values for each

monitoring node we see that T = Ll:5i:5m Ti = Ll:5i:5m s·ISd - di = sN - D, where D

represents the total number of decrements observed which can be at most eN.

3.3.2 Approximation Bounds

Equally important to reducing and bounding memory requirements, is to provide

guarantees on the approximations made on each frequency count. In the single stream

approach the MG algorithm under counts any frequency by at most eN (Lee and Ting,

2006). We will now show that equal guarantees can be made by integrating the MG

algorithm into each monitoring node.

THEOREM 1. Let each monitoring node maintain local frequency counts using

the MG algorithm. For any given item OJ, it global frequency Cj,. is at most undercounted

by eN.

PROOF. Each monitoring node uses the MG algorithm to summarize a single

stream of size ISil. Substituting N with lSd, each approximate frequency count Cj,i at all

times Cj,i - f:·ISil ~ C j,i ~ Cj,i' Summing across all monitoring nodes, to get the global

frequency, thus yields Ll:5i:5m (Cj,i - f:·ISil) = Ll:5i:5m Cj,i - Ll:5i:5m f:·ISil ~ Ll:5i:5m C j,i ~ Ll:5i:5m

Cj,i' Since by definition Ll:5i:5m ISd = N, we see that Cj,. - f:N ~ Cj,. ~ Cj,.' Thus the global

frequency of any item is at most undercounted by f:.N. o

33

3.3.3 Adjustment Invariant Maintenance

The MG algorithm selected to be integrated on each monitoring nodes does not

store in memory any counter with frequency equal to zero. Additionally, the method may

decrement counters until the frequency becomes zero. However, recall for each counter

Cj.j there is a corresponding adjustment factor 4,j. If the corresponding adjustment factor

4,j:t 0, we can not remove it from memory. Doing so would result in the sum of all

associated adjustment factors to not equal zero. This will clearly invalidate our first

adjustment factor requirement, and thus invalidate our entire frequent item monitoring

approach. Therefore, before we remove counters from memory appropriate steps must be

taken to manage the adjustment factors carefully.

When removing a counter Cj,i with frequency of zero, the corresponding

adjustment factor 4,j may be in one of three states. The first state is when the adjustment

factor ~j'i = 0. In this scenario counter Cj.j and its corresponding adjustment factor 4,j can

be removed from memory directly. The counter no longer has any value to the

monitoring process, and removing it from memory will not affect the sum of associated

adjustment factors. The second state is when the adjustment factor 4,j > 0. In this

scenario we cannot remove the counter from memory, since its adjustment factor still

holds value. We therefore continue to store the counter in memory until 4,j = 0, or until

the first state is reached. The third and final state, is when the adjustment factor 4,j < 0.

In this scenario we forward the value of the adjustment factor to the coordinator resulting

in the new value of 4,j = 0, or in other words resulting in the state change to the first

state. At this point the counter and associated adjustment factor are removed from

memory.

34

When the coordinator receives an adjustment factor corresponding to item OJ from

a monitoring node Nd, we require that it be redistributed to the other monitoring nodes.

More precisely, we select a subset of monitoring nodes with corresponding adjustment

factor 0,i > 0. Theorem 2 shows that it is always the case that at least one such

monitoring node exists.

THEOREM 2. If there is an adjustment factor 0,d < ° with corresponding counter

Cj,d = ° at node Nd, then there exists a monitoring node N p containing 0,p > 0.

PROOF. With adjustment factor requirement 1 we know that LOS:iS:ffi ()j,i = 0. Thus

if there is a ()j,i < 0, there must be a node Np containing corresponding <'>j,p > 0. Since the

adjustment factor is ()j,i < ° and its corresponding counter Cj,i = 0, we know that the item OJ

is globally infrequent. This must be true since we require the adjusted frequency (Cj,i +

()j,i) of any globally frequent item to be less than the local threshold Ti ~ 0. With

adjustment factor requirement 3, we know that ()j,p is not at the coordinator node. Thus ()j,p

is located on a monitoring node Np• o

To determine the set of monitoring nodes with adjustment factors 0,i > 0, we can

store all adjustment factor assignments at the coordinator node to prevent polling. With

this knowledge the coordinator can both determine which nodes to forward the negative

adjustment factor to and how much of its value to forward to each. We only want to

forward enough so that to cancel the positive adjustment factor out at the receiving nodes.

Making the receiving nodes adjustment factor negative will require us to forward to the

coordinator once again at a later time. This would result in wasted communication cost.

Finally, the coordinator itself may also contain an associated adjustment factor.

This adjustment factor will be negative since the item in question is globally infrequent.

35

As a result, whenever the coordinator is assigning new adjustment factors, if its

determined that there are no longer any monitoring nodes containing a negative

adjustment factor, the coordinator must redistribute it owns negative adjustment factor.

This may occur upon receiving a forwarded adjustment (see Appendix II for process

description) or during the reallocation process. In both cases the coordinator node must

also include its own negative adjustment factor in each new assignment made.

The overall purpose of the described adjustment factor maintenance policy, is to

remove all adjustment factors corresponding to item OJ with global frequency Ll~i~m Cj,i =

O. In this scenario there is no need to maintain the frequency count of such an item on any

monitoring node. Therefore, we take advantage of adjustment factor requirement 1, to

remove any remaining positive adjustment factors.

3.3.4 Memory Requirements

With the method for maintaining both the frequency counts and their

corresponding adjustment factors we can now determine the memory requirements for

both the monitoring nodes and the coordinator.

THEOREM 3. Each monitoring node uses at most O(~) counters and

corresponding adjustment factors.

PROOF. Using the MG algorithm and the adjustment factor maintenance policy

given, we know that there are at most 1 plus any positive adjustment factors. In the

worst case each item observed locally on each node is unique globally and requires an

associated adjustment factor. In this case each monitoring node will have ~ positive

36

adjustment factors plus its own local 1 counters. Adding these two totals together, we

see that the memory requirements is O(.z:p.). o

Since the coordinator only stores adjustment factors we can also bound the

memory requirements.

THEOREM 4. The coordinator node has at most O("J:2) adjustment factors stored

in memory.

PROOF. The coordinator node maintains the adjustment factor assignments made

to each node. In the worst case each item observed locally on each node is unique

globally and requires an associated adjustment factor. If this is the case, we have .z:p.

unique items in the system and .z:p. ·(m + 1) adjustment factor assignments. Thus the

coordinator node stores at most O("J:2) adjustment factors in memory. o

3.4 Recently Frequent Item Monitoring

To weigh new item occurrences more than older ones, we can adopt directly the

sliding window model. We select this model since it is the most often used in practice

(Zhu and Shasha, 2003). The concept of sliding windows was introduced in Section 2.1.2.

How sliding windows can be integrated into our monitoring approach is now discussed.

For monitoring exact recently frequent items, item occurrences must be buffered

in memory. If we are using a time-based sliding window (an example of a variable sized

sliding window), item occurrences within the last t time units must be buffered (Arasu

and Manku, 2004). On the other hand, if we are using a count-based sliding window (an

37

example of a fixed size sliding window) we must buffer the last e item occurrences in the

data stream (Demaine, Lopez-Ortiz, and Munro, 2002). Along with the buffered data

stream, we must still maintain frequency counts for each observed item. Using either

sliding window types, item frequency counts may be decremented to zero and have an

associated adjustment factor. To prevent adjustment factors from accumulating and to

free additional space for the window buffer, we can manage adjustment factors in the

same fashion as described in Section 3.3.3.

If the observed data stream is very large, buffering it entirely into memory may

not be practical. As a result, approximate solutions can be given using the time-sensitive

counting techniques introduced in Section 2.1.2. Additionally, the most recent time

sensitive counting technique, introduced by Lee and Ting (2006), uses the MG algorithm

directly. Integrating this method into our monitoring method requires the same steps

introduced previously in this work.

38

CHAPTER 4

EXPIREMENTAL EVALUATION

4.1 Data Sets and Monitoring Description

We implemented our frequent item monitoring approach in JAVA to simulate the

behavior of the proposed method. All interactions between the monitoring nodes and the

coordinator node were simulated on a single machine. Various statistics were gathered on

each simulation run to measure the performance of our method. The descriptions of some

of these statistics are given in Section 4.2.

The data sets used to represent the distributed data streams was acquired from the

Internet Traffic Archive. The Internet Traffic Archive is a data set repository used to

provide network traces to study network dynamics, usage characteristics, and growth

patterns (ita.ee.lbl.gov, 2000). The data sets publicly available include: LAN and WAN

packet traces, HTTP logs from web servers, and raw internet routing data.

To evaluate our modifications to Top-K Monitoring for tracking frequent items,

we selected two data sets. The first data set consists of wide-area network traffic between

Lawrence Berkeley Laboratory and the rest of the world (Paxson and Floyd, 1995). The

data set was created using tcpdump, capturing approximately 1.8 million TCP packets.

Information gathered on each packet include: timestamp, source addresses, destination

address, source TCP port, destination TCP port, and number of bytes communicated. All

39

addresses were renumbered using a collection of scripts to preserve the privacy of the

network users. A few example packet records collected are given in Table I below.

TABLE I

LAWRENCE BERKELEY LABORATORY EXAMPLE DATA

Timestamp Source Destination Source Destination Bytes
C!lS) Address Address TCP Port TCP Port Sent

0.010445 2 1 2436 23 2

0.023775 1 2 23 2436 2

0.026558 2 1 2436 23 1

0.029002 3 4 3930 119 42

7199.999857 399 138 1663 23 0

For our simulation experiments we monitored frequent users (source addresses).

As a result, we did not need all six fields and created a new text file containing only the

timestamps and source addresses. Additionally, the TCP packets for this data set were

collected on a single node. To simulate a distributed environment we evenly assigned the

records amongst four monitoring nodes.

The second data set used in our evaluation, consisted of the 1998 World Cup web

site logs (Arlitt and Jin, 1998). The logs were gathered between April 26 and July 26,

1998 containing web requests made to each of the 33 available web servers. Each HTTP

request gathered contains: timestamp of the request, client ID who made the request, ID

of the requested item, bytes of the response, method, status code, format of file requested,

and server ID which handled the request.

40

For our simulation experiments we used the June 9th logs of the 1998 World Cup

data set, which contained approximately 20 million web requests. On this day only 26 of

the 33 web servers were active, thus we used 26 monitoring nodes. To goal of our

monitoring process was to track frequently requested items by users. Similarly to the

Lawrence Berkeley data set, we did not need all the data fields provided. Therefore, we

created a new text file containing only the timestamp, requested item ID, and server ID

which handled the request of each record.

4.2 Input Parameter Summary

The Top-K Monitoring method required a series of user defined parameters in

order to monitor the top-k elements effectively. Since our monitoring approach is an

extension, we too must define a series of parameters. Each of these parameters may affect

the performance of our method in a variety of ways, therefore, must be examined in our

experimental evaluation. These parameters are briefly reviewed in this section.

4.2.1 Support Parameter

In our definition of the frequent items problem given in Section 1.2.2 the user

must define a support parameter s. This support parameter affects the threshold used to

define when an item is to be characterized as frequent. Theoretically, there can be at most

t frequent items (Cormode and others, 2005). From this property it is clear that when the

support parameter is lowered more items can potentially be classified as frequent. When

the support parameter is raised, however, fewer items can potentially be classified as

frequent.

41

4.2.2 Error Tolerance Parameter

In Section 3.3 we introduced methods to reduce memory requirements by

integrating an E-approximate summary data structure onto each monitoring node. The

amount of error was found to be bounded by a user defined error tolerance parameter c.

The higher the value of c, the less trustworthy the frequency counts are for a given item.

However, the benefit gained from this is in reduction of memory required. Although this

parameter can be set to any value less than s, it is generally given the value of 10% the

support parameter (Manku and Motwani, 2002).

4.2.3 Reallocation Parameters

Recall from Section 3.2.2, that the final step of reallocation is to assign a portion

of /).j to each new adjustment factor corresponding to counter Cj,i on monitoring node M.

The amount assign to each is depended upon user defined allocation parameters 0 ~ Fi <

1. The values of these allocation parameters can be assigned in a variety of different

ways, as long as, LO~~m Fi = 1. Babcock and Olston (2003) addressed this issue when

evaluating Top-K Monitoring and provided the following heuristics.

To simplify the process of setting the allocation parameters the authors first

assigned Fa, which is defined as the coordinator allocation parameter. Once this is done

the remaining parameters are allocated a portion of the remaining 1 - Fa. The fashion in

which the remaining portion was allocated is based upon one of two proposed methods:

1. Even Allocation: The remaining 1 - Fa is even distributed to each monitoring

node in 11.

42

2. Proportional Allocation: Each node is allocated a portion of 1 - Fo

proportional to the amount of traffic observed locally. That is, a larger portion

is allocated to nodes which experience larger volumes of traffic.

4.3 Performance Criteria

To evaluate our frequent item monitoring approach a senes of performance

criteria was determined. We believe each of the criteria defined reflect our goals in this

thesis. The three criteria used include: communication cost, approximation accuracy, and

memory requirements. A detail description of each of these criteria and how they were

measured is given in the following subsections.

4.3.1 Communication Cost

We defined communication cost as the ratio of the number of bits communicated

between any two nodes over the number of bits transmitted using a centralized

monitoring approach. In a centralized approach we assume only the item identifier for an

update tuple is communicated when no sliding window is involved. The item identifiers

in our data sets can each be represented as a 32-bit integer. If a time-based sliding

window is utilized, we must also include a 32-bit timestamp.

Communication is only conducted with our approach during resolution. Thus the

total number of bits transmitted can be calculated as the total number of bits sent during

each individual resolution phase. The number of bits transmitted during any single

resolution phase (BPR) is given in Equation 1.

43

EPR =I 3 1·117 1-(32 + 32 + 64)+ 131·117 1·(32 + 64)+ 117 1·64 (1)

In Equation 1, 131 is defined as the total number of broken constraints which resulted in

the resolution. We assume that the local thresholds and the adjustment factors account for

64-bits each.

4.3.2 Approximation Accuracy

In Section 3.3 we introduced methods to reduce memory requirements by

weakening the problem definition. More precisely, we allowed a bounded amount of

error on each frequency count and provided the set of approximate frequent items.

Although the amount of error is guaranteed to be no more than a user defined error

tolerance, the accuracy of the approximate frequent item set has no guarantees.

To measure the actual quality of the approximations, we adopted two commonly

used criteria. These include precision and recall. Precision is defined as the percentage of

correct items contained in the entire output. Similarly, recall is defined as the percentage

of correct items contained in the output to the number of total possible correct items

(Cormode and Muthukrishnan, 2003).

It is sometimes helpful to combine these two measurements into a single value.

C.J. van Rijsbergen (1979) gives us a measurement called an F-measure, which weighs

precision and recall equally. This equation gives the overall quality of the output and can

be expressed as follows:

44

2·P·R
F-Measure= (P+R)

4.3.3 Memory Requirements

(2)

In our monitoring approach a number of frequency counts are collected for each

observed item. The bulk of memory required by our approach is dominated by the

number of these counters. Although we bounded worst case memory requirements in

Section 3.3.4, we believe that the actual number of counters used may be significantly

less. Therefore, we measured memory requirements as the maximum number of counters

stored on any monitoring node at any given time.

4.4 Experimental Results

For each of the performance criteria defined in the previous section, we ran a

series of experimental simulation runs. Varies input parameters were used in each

experiment to see their affects on these criteria (communication cost, approximation

accuracy, and memory requirement). The set-up and individual descriptions of each

experiment is given in the following subsections. Additionally, some heuristics are

introduced to give a better understanding on how the input parameters should be

assigned.

4.4.1 Communication Cost

Our first set of experiments examined the communication cost incurred using the

two data set described in Section 4.1. In each simulation run we varied the support

45

parameter s, held the error tolerance fixed at e = 0, and varied the coordinator allocation

parameter Fa. For all simulation runs we used even allocation to assign the remaining

allocation parameters. The reason for this is that preliminary results showed no

significant differences in the communication cost using either discussed approaches.

These results were in agreement with the analysis conducted by Babcock and Olston

(2003) in their experimentations with Top-K Monitoring. Finally, we initiated our

monitoring approach on the first update tuple. Therefore, no special initialization phase

was used. In Figure 4.1 and Figure 4.2 we see the results of these initial experiments.

The results show that the effects of the coordinator allocation parameter Fa on

communication cost differs between the two data sets. In the Lawrence Berkeley TCP

data set we see that when the allocation parameter is increased, communication cost also

increases. The opposite pattern occurs with the 1998 World Cup data set.

As was seen in the analysis of Top-K Monitoring by Olston and Babcock (2003),

when Fa > 0 reallocation' can prevent reaching the expensive (re)synchronization phase.

However, this comes at the cost of having more fragile constraints which may break more

frequently. This same scenario also occurs with our monitoring approach and can explain

the differences we see.

Since only four monitors were used with the Lawrence Berkeley TCP data set, the

(re)synchronization phase required little communication and the weaker constraints could

not offset this cost. In contrast, the 1998 World Cup data set consisted of 26 monitoring

nodes. Thus the (re)synchronization phase was much more expensive, requiring many

nodes to be contacted. From these results we recommend that Fa be assigned a small

value « 0.3) when there are few nodes and a large value when there are many.

46

20%
----+-- even, S = 0.005
-7(- even, S = 0.01

~ 15%
-a-- even, S = 0.02

0
()
c:
0

~ 10% .2
c:
::J

E
E
0 5% ()

0% ~------~--------~--------~--------~------~
o 0.2 0.4 0.6 0.8

Coordinator Allocation Parameter (Fa)

FIGURE 4.1 - Communication cost for Berkeley TCP data set.

100%

----+-- even, S = 0.01

80% -7(- even, S = 0.008

~ -G-- even, S = 0.006
0
()
c: 60% 0

~
()

'2:
::J 40%
E
E
0
()

20%

0%

0 0.2 0.4 0.6 0.8

Coordinator Allocation Parameter (Fa)

FIGURE 4.2 - Communication cost for '98 World Cup data set.

47

Both results show that by reducing the support parameter communication cost

increases. This is not surprising since in theory, as the support is decreased the expected

size of the frequent item set increases. An anomaly did occur, however, in the 1998

World Cup data set when s = 0.008. In this scenario it is assumed that the frequent item

set becomes more volatile. This demonstrates the need for the data to maintain a degree

of stability in order for our purposed method to significantly reduce communication cost.

Our second experiment focused on how communication cost accumulated over

time to reach its final value. The 1998 World Cup data set was used for this experiment

but execution was terminated after 500,000 update tuples. The coordinator reallocation

parameter was set fixed at Fo = 0, while we varied the support parameter. To determine

how communication accumulates we held constant the number of update tuples to the

total number in the data set (approximately 20 million) in our communication cost

formula. The results of this experiment are shown in Figure 4.3.

We see from our results a sudden spike in communication cost occurring during

the initial 100,000 update tuples. Afterwards, communication only steadily rises until

reaching its final value. This sudden spike is most extreme when s = 0.008. In this case

over 12 million bytes were transmitted in the first 100,000 update tuples alone. As a

result, we believe if an initialization phase was used to account for these first 100,000

tuples, overall communication cost can be reduced significantly.

48

90%

--5=0.006
80%

- • - • - 5 = 0.008
70%

iii
•.•.•.. 5 =0.01

0 60% ()
c:
0 50%
~
.2

40% c:
::J
E

30% E 'I
0 i ()

20% ---_ ----- _--,---...
10%

0%

O.E+OO 1.E+05 2.E+05 3.E+05 4.E+05 5.E+05

Input Tuples

FIGURE 4.3 - Communication cost over time for '98 World Cup data set.

Finally, our third experiment focused on communication cost required when the

error tolerance c = O.l·s. We saw, in this scenario, that communication cost was between

-1.5% and 0.5% from the results given when the error tolerance c = O. That is, in some

cases communication was insignificantly raised and others were insignificantly lowered.

This signifies that our adjustment factor maintenance policies are both lightweight and

communication efficient.

4.4.2 Approximation Accuracy

Accuracy of our monitoring method is directly depended upon the accuracy of the

summary data structured integrated into our monitoring nodes. As a result, to study the

approximation accuracy is to study the actual summary data structure utilized. Recall that

we adopted the MG algorithm and modified the threshold in hopes of increasing the

49

accuracy of the counting technique. Therefore, our experiments focus on examining the

accuracy of both the original MG algorithm and our modified version.

To examine the accuracy of both versions of the MG algorithm, we conducted a

series of runs using the Berkeley TCP data set. These runs were done on a centralized

node environment; however, similar results are expected when placed in a distributed

setting. During each run we measured the average precision of both the unmodified MG

algorithm and our modified threshold version. The results of these runs are given in

Figure 4.4 below.

III Original Algorithm iii Modified Version

0.8

c
0.6 0

'iii
'0
~ 0.4
0..

0.2

0

0.005 0.01 0.02 0.03
Support

FIGURE 4.4 - MG algorithm average precision.

We see from the results that significant improvement was made on the precision

of the MG algorithm. This is most extreme when s = 0.01, which showed a 99% increase

in precision. The least improvement was found to be when s = 0.02, which still showed

an increase in over 50%.

50

These results are not surprising, however, when examining the threshold used by

the traditional MG algorithm. Recall in the traditional MG algorithm, we subtracted eN

from the threshold to account for the maximum possible amount of error introduced to

each frequency count. To demonstrate this over-estimation in the error introduced we ran

a series of runs with varying supports and reported the true number of decrements, or the

true error introduced on the frequency counts, at the end of each run. The results in Table

II clearly show this over-estimation. Thus counting the true number of decrements (or

true error introduced) can greatly improve the accuracy of the MG algorithm.

TABLE II

DECREMENTS OBSERVED IN THE MG ALGORITHM

Support Max Decrements True Decrements

0.005 8949 0

0.01 17899 31

0.02 35799 313

0.03 53699 951

4.4.3 Memory Requirements

To provide the exact frequent item set, a counter for each observed item must be

kept in memory. The amount of memory in this case is bounded by lUI which may be

very large. In the Lawrence Berkeley TCP data set there was 1,622 unique user IDs. The

much larger 1998 World Cup data set contained 9,198 unique item IDs. Thus we expect

each monitor to require equal amount of counters.

51

When tracking the approximate frequent item set, we saw in Section 3.3.4 that

each monitoring node required between O(1) and O(IG-) counters. To test the actual

number of counters used we setup a series of runs with varying supports using both the

Berkeley TCP data set and the 1998 World Cup data set. The results of these runs are

given in Table III.

TABLE III

MEMORY REQUIREMENTS FOR APPROXIMATE TRACKING

Support Max Counts Max Counts Max Counts

(mle:) (lIe:) (Actual)

World Cup Data Set 0.01 26,000 1,000 1,281

0.008 32,500 1,250 1,521

0.006 43,334 1,667 1,895

Berkeley Data Set 0.02 2,000 500 502

0.01 4,000 1,000 1,001

0.005 8,000 2,000 1,489

Given in Table III are the maximum counts used by any monitor, as well as, the

worst cases bound for our method O(IG-). Also included is the worst case memory

requirements for any centralized monitoring approached O(1) for comparison. Ideally,

our method would use approximately the same amount of memory as any centralized

approached in practice. Our results verify that this is true, since the number of counters

52

used is much closer to 1 than it is to p.. In one case the number of counters used was

found to be less than the worst case bound for any centralized approach.

4.5 Comparison

To finalize our evaluation, we compared our frequent item monitoring approach

with Top-K Monitoring. We measured the communication cost and the output quality of

both methods using exact counting. Since our monitoring method is designed explicitly to

solve the frequent items problem and we are doing exact counting, the accuracy is

perfect. That is, there are no false positives and no false negatives, yielding an F-measure

of 100%.

Top-K Monitoring was not originally designed to monitor frequent items, but

rather to provide the top-k ranked items. Recall in Section 1.2.4, that if k = t we are

guaranteed to report all frequent items. Thus, we can use any top-k monitoring method to

also monitor frequent items. Since we use very small support values, however, assigning

k in this fashion would yield a very large list outputted. This list is also likely to contain a

large number of false positives (or a low precision value). Therefore, before comparison

we first investigated various setting of k with the goal of improving overall output

quality.

Our experiments used Lawrence Berkeley TCP data set. We measure both recall

and precision every 100,000 update tuples and formed an average of these measurements.

These two averages were then combined to form an F-measure. We plotted these

53

measures on a curve given in Figure 4.5. We see from these results that the overall

quality of the output can be greatly improved using a k < j..

100%

80%

Q) 60% ...
:::I
rJl
ctl
Q)

~ 40% u..
I

20%

0%

5

'" ,'." " .
\,' "

\: '.
: \

30

\

" "

55

"

80

"

'-'
'-,

105

k·value

'"

....... S =0.005

- . - • - S = 0.01

--5=0.02

",
",

",

...... - .. - - --.- '-.

130 155 180

FIGURE 4.5 - Output quality of Top-K Monitoring on Berkeley TCP data set.

Using our results above as a guide for selecting an appropriate value for k, we

then began comparing Top-K Monitoring with our modified version. In these

experiments we again used the Lawrence Berkeley TCP data set. We varied the

coordinator allocation parameter and the support value in each simulation run and

measured the final communication cost. The allocation parameter which yielded the

optimal communication cost was selected in both methods. Additionally, we selected the

k value which yielded the optimal F-measure for each support. The results of our

comparisons are given in Table IV.

We see from the results that in all scenarios communication cost was lower using

our modified explicit version. The difference between the two methods was greatest

54

when the support is low. This is not surprising since when the support is low, the required

k needed to report all frequent items must be high. Since the entire top-k set is transmitted

when any constraint is broken, a large k will also yield very long messages. This is likely

the reason for the large gap in communication cost. Additionally, we see from the results

that the k value chosen approximates the average size of F outputted for each support.

Thus the differences in communication cost are caused more by the differences in the

actual algorithms rather than by the output sizes.

TABLE IV

COMPARISON RESULTS WITH TOP-K MONITORING

Method Support Avg. Output Communication F-Measure
Size

Top-K Monitoring 0.005 50.00 143.34% 95.37%

0.01 20.00 46.66% 96.07%

0.02 10.00 12.20% 83.62%

Modified Version 0.005 52.25 7.43% 100.0%

0.01 21.45 7.03% 100.0%

0.02 7.48 2.70% 100.0%

For our final comparison we observed the scalability of each method. To do this

we varied the number of monitoring nodes using the Lawrence Berkeley TCP data set. In

each simulation we held the support fixed at 0.01 and used k = 20. The results of this

experiment shows that communication cost for both methods grow approximately linear

to the number of monitoring nodes. However, with our modifications the rate of growth is

much less.

55

CHAPTERS

APPLICATION: DETECTING DDoS ATTACKS

5.1 Introduction

Denial of service (DoS) attacks is a malicious attempt by a single person or a

group of people to prevent legitimate users from accessing a provided service (cert.org,

1997) Although DoS attack patterns are highly diversified, coming in many different

forms, the most generally observed pattern involves the transmission of numerous

packets toward a single destination (Houle and Weaver, 2001). The goal is to overload

the available bandwidth, or other resources of the intended victim, with a surge of

network traffic. These types of attacks are commonly called bandwidth attacks and

consists of TCP flooding, ping flooding, and UDP flooding.

Previously the most common DoS attacks were conducted by a single source

directed at a single victim (Houle and Weaver, 2001). Since the year 1999, however,

many more sophisticated attacking tools have been created which utilize multiple

attacking sources. These newly introduced attacking patterns have created an additional

class of its own, called distributed denial of service attacks (DDoS). The goal of these

attacks is the same as its predecessors, but overwhelms the resources of the intended

victim by brute force numbers.

56

Generally a DDoS attack consists of two stages, each depicted by Figure 5.1. The

first stage consisted of the identification and infiltration of numerous host computers.

These subverted machines are usually called "zombies", although also referred to as

agents. Once a desired number of agents have been gathered, the final step is for the

actual attack to begin. The attack traffic is generated by each agent, and is propagated

toward the victim. To hide the identity of each agent, in hopes of preventing easy

detection, some of the agents may use spoofed addresses. Luckily for many defense

systems, the scenario of spoof addressing is found to be rare in actual practice (Mao and

others, 2006).

• •••

Victim

FIGURE 5.1 - DDoS attacking pattern.

The tools used to launch DDoS attacks are relatively simple to use and readily

available (Zhang and Parashar, 2005). This has resulted in a surge of attacks recently,

some even amongst top web companies. For example in the year 2000, websites such as

57

Yahoo, Amazon.com, eBay, and others all experienced regional outages caused by DDoS

attacks (cnn.com, 2000). In 2003 eBay received tens of thousands of dollars in damages

from a 20,000 agent coordinated attack on their website (spamdailynews.com, 2005).

5.2 Detecting DDoS Attacks

Motivated by the impact of DDoS attacks on the Internet community, we will

examine how our frequent item monitoring method can be used as a detection system. As

stated, DDoS attacks are generally characterized by a surge of network traffic toward an

intended victim host. Past detection solutions have used this simple, but obvious

characteristic, as a detection criterion (Akella and others, 2003; Manjhi and others, 2005;

Sekar and others, 2006). Generally, these systems track destination addresses which have

received a disproportional amount of traffic in the observed network.

Similar to past solutions, we will continuously monitor destination addresses

receiving a large number of packets over a given time. That is, we will report frequently

used destination addresses. Since DDoS attacks have only a limited duration, we must

maintain time-sensitive frequency counts. To do this we buffered all update tuples

occurring over the last five minutes, which is the commonly observed attack duration in

the Internet (Moore, Voeker, and Savage, 2001.).

Since any detection system has an inherited degree of inaccuracy, we used exact

counting. By examining the detection capabilities in this fashion, we will know

immediately if our approach is applicable as a detection tool. If the detection capabilities

are then found to be satisfactory and memory requirements become a concern, the

58

methods provided in Section 3.4 can be utilized. However, approximation frequent counts

may degrade the detection accuracy of our method.

5.3 Data Sets

To evaluate the applicability of our monitoring method as a possible DDoS

detection tool, we adopted the publicly accessible UCLA CSD network traces

(lever.cs.ucla.edu). Available network traces include normal TCP and UDP traffic traces

collected at a border router. Additionally, a collection of attack traces were generated

from a testing machine using the tfn attack tool. Information gathered on each packet

include: timestamp, source address, destination address, source port, destination port, and

length packet in bytes. All addresses were renumbered using a collection of scripts to

preserve the privacy of the network users.

To create a more complete data set, we a combined a series of normal traffic

traces with four different types of DDoS attack traces. The four different attack patterns

include (Mirkovic, Prier, and Reiher, 2002):

1. Constant Rate Attack: Represents the majority of attack patterns, which

deploys a continuous maximum rate of packets.

2. Pulsing Attack: Every 100 seconds the attack rate will oscillate from the

maximum rate to zero.

3. Increasing Rate Attack: The attack rate increases over a 300 second time-span

until the maximum rate is achieved.

59

600

500
u;-
Co

OJ 400
~
.Sl 300 ell
a:
..x:
u 200
~ «

100

0

600

500
u;-
S- 400
~
.Sl 300 ell
a:
..x:
u 200
~ «

100

0

0 50 100

0 50 100

Constant Rate Attack

150 200

Time (sec)

Pulsing Attack

150 200

Time (sec)

I.

250 300 350

250 300 350

FIGURE 5.2 - Constant and pulsing rate attack pattern.

60

400

400

600

500
Ul
S- 400
::.r::: --.Sl 300 ctI
a:
..10:
() 200 ctI = «

100

0

600

500
Ul
S- 400
~
.Sl 300 ctI
a:
..10:
() 200
:lll «

100

0

0 50

0 50

Increasing Rate Attack

100 150 200

Time (sec)

Gradual Pulsing Attack

100 150 200

Time (sec)

250 300 350

250 300 350

FIGURE 5.3 - Increasing and gradual pulsing attack pattern.

61

400

400

4. Gradual Pulse Attack: The attack rate increases over a 300 second time-span.

When the maximum rate is achieved, it is maintained for 20 seconds then

gradually decreased to zero over 10 seconds. The pattern then repeats after a

40 second inactive period.

Each attack pattern used had a maximum rate of 500KBps. The attack patterns are

represented in Figure 5.2 and Figure 5.3. Similar to the Lawrence Berkeley data set we

simulated a distributed environment by evenly assigning packets to four monitoring

nodes.

5.4 Performance Criteria

We measured the performance of our system usmg four common intrusion

detection system (IDS) evaluation criteria. Statistics reflecting these criteria were

measured during each of our simulation runs. The criteria we used and their definitions

are given as follows:

1. Detection Delay: The amount of time between when the attack begins and

when the address of the victim becomes frequent. When the address of the

victim becomes frequent we say this signifies an attack. This delay does not

include communication delay or processing delay.

2. Detection Rate: The percentage of the number of attacks detected to the total

number of attacks in the data set.

3. False Positive Rate: The percentage of the number of packets received at a

destination wrongly classified as a victim of an attack to the total number of

packets in the data set.

62

4. Communication Cost: The number of bytes communicated by all the

monitoring nodes over the number of bytes needed to forward all item

occurrences and their timestamps to a centralized location for processing

5.5 Experimental Results

In each simulation run we varied the support parameter s, held the error tolerance

fixed at c = 0, and varied the coordinator allocation parameter Fa. The coordinator

allocation parameter which yielded optimal communication cost was reported in all our

results. Statistics needed for each criterion given, was gathered during each run. The

results of our experiments are summarized in Table V below.

TABLE V

DDOS DETECTION EVALUATION RESULTS

Support Detection False Positive Average Delay Communication
Rate Rate (seconds) Cost

0.2 100.0% 12.99% 26.51 7.11%

0.3 100.0% 5.10% 35.98 0.99%

0.4 100.0% 2.84% 46.42 0.41%

0.5 100.0% 2.24% 58.84 0.24%

We see that with an appropriately set support value all attacks can be detected in

less than a minute. Additional false positives may also occur, however, these alarms may

still be of interest since they represent destinations receiving significant amount of traffic

over a short period of time. Finally, we see communication cost is significantly lower

than forwarding all traffic events to a centralized location for analysis.

63

This preliminary evaluation shows promising results when compared with three

other known DDoS detection methods (Chen and Hwang, 2006; Peng, Leckie, and

Ramamohanarao, 2004; Zhang and Parashar, 2005). Table VI gives a comparison table of

all methods examined. We see from the table that each detection method yielded a high

detection rate of 75-100%. However, similar to our results, methods (Chen and Hwang,

2006) and (Zhang and Parashar, 2005) also yielded some false alarms. Our false positive

rate is most comparable with (Zhang and Parashar, 2005) which showed a rate between

7.67% and 12.12%. The work in (Chen and Hwang, 2006) examined different threshold

values and traded off detection accuracy to reduce false positives to less than 1 %. Only

(Peng, Leckie, and Ramamohanarao, 2004) measured the detection delay of their method,

which required between 69.7 and 10 seconds depending on the aggressiveness of the

attack. Although our detection delays are comparable, we do not include processing and

communication delay.

TABLE VI

COMPARISON OF MUTLIPLE DDoS DETECTION SYSTEMS

Method Detection False Positive Average Delay
Rate Rate (sec)

(Chen et ai., 2006) 75-100% 0-70% No data

(Peng et ai., 2004) 90-100% No data 10-69.7

(Zhang et ai., 2005) No data 7.67-12.12% No data

Proposed System 100% 2.24-12.99% 26.51-58.84

64

6.1 Conclusions

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we examined the problem of monitoring frequent items over

distributed data streams. The original goal was to create a system that used limited

memory, computation time, and communication. We examined a variety of prior

solutions in the problem domain and in closely related domains. One solution which

gained particular attention was the communication efficient Top-K Monitoring method

proposed by Babcock and Olston (2003). It was determined that their method could be

modified to explicitly monitor frequent items.

Although the original Top-K Monitoring approach allowed for approximate

answers, they did not utilize summary data structures. As a result, memory requirements

were still dominated by the number of unique items observed. To fuse two prior

methodologies together, we integrated a modified version of the MG algorithm into our

monitoring approach. This allowed us to reach our initial goal of requiring limited

memory space.

To evaluate all of our modifications, we used two widely used and publicly

available data sets. The results of our experiments demonstrated that our approach used

less communication and scaled better then the original Top-K Monitoring method.

65

Additionally, approximate answers were provided with near exact results. This was

accomplished while still requiring a limited amount of memory space.

Finally, we examined the important problem of detecting DDoS attacks in a

networked environment. Since DDoS are characterized by a flood of network traffic, this

problem fits appropriate with our monitoring task. After evaluation, our findings

demonstrated that our method can indeed be used as a detection tool. When compared

with other known detection systems, we saw that our approach yielded favorable results.

6.2 Future Work

Our evaluation results showed two important issues with our monitoring method.

First although our approach yielded better scalability than Top-K Monitoring, it still

scaled linearly to the number of monitoring nodes. More analysis is needed in this

direction to determine the performance under a large number of monitoring nodes (> 100).

Second, we saw that a significant amount of communication cost can be avoided if an

initialization phase is utilized. Further analysis is needed to study different initialization

methods and heuristics on how long they should operate before our monitoring method

can begin.

In the selected application domain we saw that our method yielded favorable

results. Our preliminary analysis, however, should still be expanded in more detail. This

would include implementing our monitoring approach on a specialized networking

simulator. More detailed analysis can be conducted in this fashion. This is important

since our analysis ignored the contributions of propagation and transmission times in the

detection delay. Additionally, deployment issues were not addressed in our work. This

66

could include the cost of implementing in a real world ISP network and how likely it

would gain acceptance in the IDS community.

Finally, in many application domains there is a need for time sensitive data. That

is, to weigh more recent occurrences more than older ones. Although this topic was

covered in this thesis, we did not provide a comprehensive evaluation. More analysis in

this direction is therefore needed.

67

REFERENCES

Aggarwal, c., Parthasarathy, S., Ghoting, A, and Otey, M. 2006. Data Streams: Models

and Algorithms. New York: Springer-Verlag.

Akella, A, Bharambe, A, Reiter, M., and Seshan, S. 2003. Detecting DDoS attacks on

ISP networks. Proceedings of the 2003 PODS Workshop on Management and

Processing of Data Streams.

Arasu, A. and Manku, G. 2004. Approximate counts and quantiles over sliding windows.

Proceedings of the 23rd Symposium on Principles of Database Systems (Paris,

France),286-296.

Babcock, B., Babu, S., Datar, M., and Motwani, R., and Widom, 1. 2002. Models and

issues in data stream systems. Proceedings of the 21st Symposium on Principles of

Database Systems (Madison, Wisconsin), 1-16.

Babcock, B. and Olston, C. 2003. Distributed top-k monitoring. Proceedings of the 2003

AMC SIGMOD International Conference on Management of Data (San Diego,

California),28-39.

Chen, Y. and Hwang, K. 2006. Collaborative change detection of DDoS attacks on

community and ISP networks. Proceedings of the International Symposium on

Collaborative Technologies and Systems (Las Vegas, Nevada), 401-410.

Cohen, E. and Strauss, M. 2003. Maintaining time-decaying stream aggregates.

Proceedings of the 22nd Symposium on Principles of Database Systems (San Diego,

California),223-233.

Cormode, G. and Garofalakis, M. 2005. Sketching streams through the net: distributed

approximate query tracking. Proceedings of the 31st International Conference on Very

68

Large Data Bases (Trondheim, Norway), 13-24.

Cormode, G. and Garofalakis, M. 2005. Efficient strategies for continuous distributed

tracking tasks. IEEE Data Engineering Bulletin, 25:33-39.

Cormode, G., Garofalakis, M., Muthukrishnan, S., and Rastogi, R. 2005. Holistic

aggregates in a networked world: distributed tracking of approximate quantiles.

Proceedings of the International Conference on Management of Data (Baltimore,

Maryland),25-36.

Cormode, G. and Muthukrishnan, S. 2003. What's hot what's not: tracking most frequent

items dynamically. Proceedings of the 22nd Symposium on Principles of Database

Systems (San Diego, California), 296-306.

"Cyber-attacks batter Web heavyweights." February 2000, available from

http://archives.cnn.coml2000ffECHIcomputing/02/09/cyber.attacks.01/index.html;

accessed 8 March 2007.

Demaine, E., Lopez-Ortiz, A., and Munro, J. 2002. Frequency estimation of internet

packet streams with limited space. Proceedings of the loth Annual European

Symposium on Algorithms, 348-360.

"Denial of Service Attacks." October 1997, available from

http://www .cert.org/tech_tips/deniaCoCservice.html; accessed 8 March 2007.

Golab, L., DeHaan, D., Demaine, E., Lopez-Ortiz, A., and Munro, J. 2003. Identifying

frequent items in sliding windows over on-line packet streams. Proceedings of the 3,d

ACM SIGCOMM Conference on Internet Measurement (Miami Beach, Florida), 173-

178.

Golab, L. and Ozsu, M. 2005. Update-Pattern-Aware modeling and processing of

continuous queries. Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data (Baltimore, Maryland), 658-669.

Hinden, R. and Deering S. "IPv6 Addressing Architecture." February 2006, available

from http://tools.ietf.org/rfc/rfc4291.txt; accessed 5 March 2007.

69

Houle. K. and Weaver, G. "Trends in Denial of Service Attack Technology".

October 2001, available from http://www.cert.org/archive/pdflDoS_trends.pdf;

accessed 8 March 2007.

Karp, R., Shenker, S., and Papadimitriou, C. 2003. A simple algorithm for finding

frequent items in streams and bags. ACM Transactions on Database Systems, 28:51-

55.

Keralapura, R., Cormode, G., and Ramamirtham, J: 2006. Communication-efficient

distributed monitoring of threshold counts. Proceedings of the International

Conference of Management of Data (Chicago, Illinois), 289-300.

Kim, H. and Karp, B. 2004. Autograph: Toward automated distributed worm signature

detection. Proceedings of the 13th USENIX Security Symposium (San Diego,

California), 271-286.

Lee, L.K. and Ting H.F. 2006. A simpler and more efficient deterministic scheme for

finding frequent items over sliding windows. Proceedings of the 25th Symposium on

Principles of Database Systems (Chicago, Illinois), 290-297.

Li, H., Lee, S.Y., and Shan, M.K. 2005. Online mining (recently) maximal frequent

itemsets over data streams. Proceedings of the 15th International Workshop on

Research Issues in Data Engineering: Stream Data Mining and Applications, 11-18.

Liu, H., Lu, Y., Han, J., and He, J. 2006. Error-adaptive and time-aware maintenance of

frequency counts over data streams. Proceedings of the lh International Conference

on Web-Age Information Management (Hong Kong, China),484-495.

Madden, S., Franklin, M., Hellerstein, J., and Hong, W. 2003. The design of an

acquisitional query processor for sensor networks. Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data (San Diego, California),

491-502.

Manjhi A., Shkapenyuk, V. Dhamdhere, K., and Olston, C. 2005. Finding (recently)

frequent items in distributed data streams. Proceedings of the 2 r t International

70

Conference on Data Engineering, 767-778.

Manku, G. and Motwani, R. 2002. Approximate frequency counts over data streams.

Proceedings of the 28th International Conference on Very Large Data Bases (Hong

Kong, China), 364-357.

Mao, Z., Sekar, V., Spatscheck, 0., van der Merwe, J., and Vasudevan, R. 2006.

Analyzing large DDoS attacks using multiple data sources. Proceedings of the 2006

SIGCOMM Workshop on Large-Scale Attack Defense (Pisa, Italy), 161-168.

Metwally, A., Agrawal, D., and Abbadi, A. 2005. Computation of frequent and top-k

elements in data streams. Proceedings of the loth International Conference on

Database Theory (Edinburgh, Scotland), 398-412.

Mirkovic, J., Prier, G., and Reiher, P. 2002. Attacking DDoS at the source. Proceedings

of the ldh IEEE International Conference on Network Protocols (Paris, France), 312-

321.

Misra, J. and Gries, D. 1982. Finding repeated elements. Science of Computer

Programming, 2:143 - 152.

Moore, D., Voeker, G., and Savage, S. 2001. Inferring Internet denial-of-service activity.

Proceedings of the loth USENIX Security Symposium (Washington, D.C.), 9-22.

Peng, T., Leckie, c., and Ramamohanarao, K. 2004. Proactively detecting distributed

denial of service attacks using source IP address monitoring. Proceedings of the 3rd

International Networking Conference (Athens, Greece), 771-752.

"Sanitized UCLA CSD traffic traces." available from

http://lever.cs.uc1a.edu/ddos/traces/; accessed 8 March 2007.

Sekar, V., Duffield, N., Spatscheck, 0., van der Merwe, J., and Zhang, H. 2006. LADS:

Large-scale automated DDoS detection system. Proceedings of USENIX Annual

Technical Conference (Boston, Massachusetts), 171-184.

Stanojevic, R. "Scalable heavy-hitter indentification." available from

71

http://www.hamilton.ie/person/rade/ScalableHH.pdf; accessed 4 March 2007.

Sun, 1., Papadimitriou, S., and Faloutsos, C. 2006. Distributed Pattern Discovery in

Multiple Streams. Technical Report CMU-CS-06-100, School of Computer Science,

Carnegie Mellon University, Pittsburgh, PA.

Yu, H., Li, H.G., Wu, P., Agrawal, D., and Abbadi, A. 2005. Efficient processing of

distributed top-k queries. Proceedings of the i6th international Conference on

Database and Expert System Applications (Copenhagen, Denmark), 65-74.

Zhang, G. and Parashar, M. 2005. Cooperative defense against DDoS attacks.

Proceedings of the 3rd International Workshop on Security in Information Systems

(Miami, Florida), 113-122.

Zhu, Y. and Shasha, D. 2002. StatStream: Statistical monitoring of thousands of data

streams in real time. Proceedings of the 28th International Conference on Very Large

Databases (Hong Kong, China), 358-369.

"Zombie master pleads guilty of eBay Internet attack." December 2005, available from

http://www.spamdailynews.com!publish/Zombie_mastecpleads_guilty _to_ eBay

_Internecattack.asp; accessed 8 March 2007.

72

APPENDIX I

MONITORING NODE UPDATE PROCESS

The flow chart listed below demonstrates the basic step-by-step process used at

each monitoring node upon receiving a single update tuple. This process assumes that no

recency is involved in the monitoring process.

Update tuple 'OJ. tp
received

Ti =Ti+S

Is counter Cj.i
stored in memory?

Yes

Manage new
counter

Are all constraints
f------I~ valid?

Yes

End

73

Send invalid
constraints to
coordinator

APPENDIX II

COORDINATOR FORWARDING PROCESS

The flow chart below demonstrates the step-by-step process used at the

coordinator node upon receiving a forwarded adjustment factor (see Section 3.3.3).

Receive ()j,D from ND

No node ~
with ()jj <O?

No

r--~ Select a node I\Ip
with ilj,p> 0

Is
()j,P + value < O?

Yes

Send ()J'p= 0
to monitoring

node Np

'-----1 value = ilj,P + value

Ye

In all cases
()j,D<O.

value = value + ()j,O

Send
()j,p= ()j,p + value
to monitoring

node Np

End

74

In all cases
value < O.

APPENDIX III

DATA SET DETAILS & EXAMPLES

In Section 4.1 we described the two data sets used in our evaluation experiments.

The first data set described was the Lawrence Berkeley TCP data set. Example data was

given in Table 1. The second data set used was the 1998 World Cup data set. Below we

show example data from this data set. We only show certain fields due to page size

constraints.

Client ID Date Status Size Server Object ID

1051164 09/Jun/1998: 16:30:21 200 1699 13 138

1227767 09/JunlI998: 16:30:21 200 4754 16 10371

16217 09/JunlI998: 16:30:21 200 348 16 25195

350507 09/JunlI998: 16:30:21 200 870 16 59

988304 09/JunlI998: 16:30:21 200 106 16 24668

915299 09/JunlI998: 16:30:21 200 19686 16 1687

674830 09/JunI1998: 16:30:21 200 665 16 218

1227743 09/JunlI998: 16:30:21 200 665 16 218

12905 09/JunlI998: 16:30:21 200 14432 16 8

978141 09/JunI1998: 16:30:21 200 472 16 24677

932973 09/Jun/1998: 16:30:21 200 1077 20 6149

890039 09/JunlI998: 16:30:21 200 4032 20 13779

1255525 09/Junl1998: 16:30:21 200 498 20 86

608386 09/JunlI998: 16:30:21 200 5024 20 13798

1255497 09/JunlI998: 16:30:21 200 1105 21 174

75

Finally, in Section 5.3, we described the data set used to evaluate our monitoring

approach as a possible DDoS detection tool. The data set we used was a combination of

normal UDP traffic traces with four different types of DDoS attack traces. All traces used

are publicly available at http://lever.cs.ucla.edu.

The normal traffic traces used in our combined data set are listed below with their

relative URL. The final timestamp recorded in file8 was listed at 21153 seconds. Thus the

combined data sets represent less than six hours of UDP normal traffic.

filel /ddos/traces/public/trace8/udp/file 1

file2 /ddos/traces/public/trace8/udp/file2

file3 /ddos/traces/public/trace8/udp/file3

file4 /ddos/traces/public/trace8/udp/file4

file5 /ddos/traces/public/trace8/udp/file5

file6 /ddos/traces/public/trace8/udp/file6

file7 / ddos/traces/pub 1 ic/trace8/udp/file 7

file8 /ddos/traces/public/trace8/udp/file8

The constant rate attack was inserted within file2 normal traffic trace, at approximately

2000 seconds. Since the attack trace started at zero seconds, we renumbered all

timestamps relative to the new start time. The constant rate attack traces used are listed

below with their relative URL.

file 1 /ddos/traces/public/usc/trace3/exp 1/udp/file 1

file2 /ddos/traces/public/usc/trace3/exp l/udp/file2

76

The increasing rate attack was inserted within file4 normal traffic trace, at approximately

7000 seconds. Again, since the attack trace started at zero seconds, we renumbered all

timestamps relative to the new start time. The increasing rate attack traces used are listed

below with their relative URL.

file 1 /ddos/traces/public/usc/trace3/exp3/udp/file1

file2 /ddos/traces/public/usc/trace3/exp3/udp/file2

The pulsing rate attack was inserted within file6 normal traffic trace, at approximately

12000 seconds. The pUlsing rate attack trace used is listed below with its relative URL.

file 1 /ddos/traces/public/usc/trace3/exp2/udp/file 1

Finally, the gradual pulse rate attack was inserted within file8 normal traffic trace, at

approximately 17000 seconds. The gradual pulse rate attack trace used is listed below

with its relative URL.

file 1 /ddos/traces/public/usc/trace3/exp4/udp/file 1

77

APPENDIX IV

REALLOCATION CORRECTNESS PROOFS

In this section the reallocation method introduced in Section 3.2.2 is proven to

assign adjustment factors meeting each of the three requirements given. Recall that the

first adjustment factor requirement calls for the LOS;iS;m Jj,i = O. The following theorem

shows that the reallocation method used meets this requirement.

THEOREM 5. Given the reallocation method introduced in Section 3.2.2, when

the method terminates LOs;is;m Jj,i = O.

PROOF. Theorem 5 can be proven in a very similar fashion as the correctness

proof provided by Babcock and Olston (2003). First consider that before adjustment

factors are assigned, it is assumed each Jj,i = O. The theorem clearly holds in this initial

case. Next consider when a set of participating nodes 11 are assigned new adjustment

factors Jj,i' The sum of adjustment factors in this case is not altered:

LiEll Jj,i = LiEll(Ti - Cj,i + Fd1)

= LiEll Ti - LiETJ Cj,i + I:!..j

= LiEll Ti - LiETJ Cj,i + (LiEll Cj,i - LiEll Ti + LiETJ Jj,i)

78

Since the sum is never altered from the initial base case, the reallocation method

introduced in Section 3.2.2 meets the first adjustment factor requirement and terminates

with LO~i~m ~j.i = O. D

The final two adjustment factor requirements are very similar in nature and are

thus proven in the same fashion. Therefore, only a formal proof for adjustment factor

requirement 2 is given. This requirement calls for ~j.o 2:: 0 for each item OF E F. The

following theorem shows that the reallocation method used meets this requirement.

THEOREM 6. Given the reallocation method introduced in Section 3.2.2, when

the method terminates for each item OF E F its corresponding adjustment factor ~F.O 2:: O.

PROOF. Let 11 be a set of participating nodes involved in the reallocation process.

Since the item OF E F, LiETl CF.i + LiET} ~F.i 2:: LiETl h This is true for the following two

reasons:

1. If 11 = {No, NI , ... , Nm}, then the above statement is true by the membership

definition given in Section 1.2.

2. If 11 = {N I, No} then the reallocation process was initiated following Phase 2 of

resolution. For this to occur the above statement must be true otherwise

validation testing (Section 3.2.1) would have failed and reallocation would not

have been initiated.

Given the above property, I1F = LiETl CF.i + LiETl ~F.i - LiETl Ti 2:: O. Allocating a portion of

this value results in ~F.O 2:: Fo·I1 F 2:: 0 since Fo 2:: O. Thus the reallocation method introduced

in Section 3.2.2 meets the second adjustment factor requirement and terminates with ~F.O

2:: O. D

79

CURRICULUM VITAE

NAME: Robert Harrison Fuller

ADDRESS: Department of Computer Engineering and Computer Science
University of Louisville
Louisville, KY 40292

DOB: Louisville, KY - June 9 1984

EDUCATION

& TRAINING: B.S., Computer Science

Indiana University Southeast

2002 - 2005

AWARDS: Chancellor's List

Indiana University Southeast

Spring 2003 - Spring 2005

Computer Sciences (Math/Science) Outstanding Student Award

Indiana University Southeast

May 2005

HONOR SOCIETIES: Alpha Chi National College Honor Scholarship Society

Indiana University Southeast

February 2005

Golden Key Internation.al Honour Society

University of Louisville

September 2006

80

	Monitoring frequent items over distributed data streams.
	Recommended Citation

	tmp.1423685735.pdf.0Nj6o

