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ABSTRACT 

MONITORING FREQUENT ITEMS OVER DISTRIBUTED DATA STREAMS 

Robert H. Fuller 

April 3, 2007 

Many important applications require the discovery of items which have occurred 

frequently. Knowledge of these items is commonly used in anomaly detection and 

network monitoring tasks. Effective solutions for this problem focus mainly on reducing 

memory requirements in a centralized environment. These solutions, however, ignore the 

inherently distributed nature of many systems. Naively forwarding data to a centralized 

location is not practical when dealing with high speed data streams and will result in 

significant communication overhead. 

This thesis proposes a new approach designed for continuously tracking frequent 

items over distributed data streams, providing either exact or approximate answers. The 

method introduced is a direct modification to an existing communication efficient 

algorithm called Top-K Monitoring. Experimental results demonstrated that the proposed 

modifications significantly reduced communication cost and improved scalability. 

Also examined in this thesis is the applicability of frequent item monitoring at 

detecting distributed denial of service attacks. Simulation of the proposed tracking 
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method against four different attack patterns was conducted. The outcome of these 

experiments showed promising results when compared to previous detection methods. 
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1.1 Background 

CHAPTER 1 

INTRODUCTION TO DATA STREAMS 

Recent years has shown a rapid increase in applications requiring the processing 

of data streams. Data streams are sequences of data that arrive continuously over time 

(Cohen and Strauss, 2004). Examples include network traffic data, stock tickers, click 

streams, and data generated by wireless sensors. In each of these examples the data 

stream may be represented as a sequence of tuples containing destination addresses, stock 

quotes, environmental readings, etc. 

Data streams from a variety of application domains generally exhibit very similar 

properties which yield interesting challenges. First the data generally arrives at a very fast 

pace, sometimes as fast as several gigabytes a second (Lee and Ting, 2006). This requires 

real-time processing of each update tuple to keep pace with the rate of the stream. Second 

the final length of the stream is often times not known in advance. As a result, it is 

modeled as a never-ending or unbounded stream (Zhu and Shasha, 2002). Since 

processing must be done in real-time, storing to a secondary storage disk is not feasible. 

Additionally, only a limited amount of a main memory is available. Third the data is 

usually distributed in large networks (Sun, Papadimitriou, and Faloutsos, 2006). Thus 

communication must be limited to observe any imposed network constraints. Finally, 



processing results are generally given to the user continuously, always reflecting the 

current state of the data stream (Babcock and others, 2002). 

A common data stream processing task is to find items in the data which have 

occurred frequently. An item is defined to be frequent if it accounts for a high percentage 

of the total number of occurrences seen so far. Important data stream applications of 

frequent item analysis include: 

1. Web Advertising: Revenue may be increased by recognizing users who 

frequently click advertisements and displaying Pay-Per-Click advertisements 

when they visit your site (Metwally, Agrawal, and Abbadi, 2005). 

2. Network Flow Management: Generally only a few flows will account for a 

large portion of bandwidth in a network. Knowing these flows can be used to 

allocate bandwidth more fairly (Stanojevic). 

3. Detecting Network Anomalies: Some network attacks exhibit frequent 

characteristics. For example, worms can be detected by determining 

frequently occurring substring patterns in traffic flows (Kim and Karp, 2004). 

Another example includes the detection of distributed denial of service 

(DDoS) attacks. Recently, methods have shown that by identifying destination 

addresses which have received a large number of packets over a given time 

can be used to detect DDoS attacks (Akella and others, 2003; Manjhi and 

others, 2005; Sekar and others, 2006). 

In this thesis we consider the problem of monitoring frequent items over 

distributed data streams. The term monitoring, means that the up-to-date list of frequent 

items are displayed to the user continuously in real-time. This problem inherits many of 
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the data stream processing challenges described previously. Due to the unbounded nature 

and high data rates of streams, we must propose a method that is both space and time 

efficient. Additionally in this scenario, frequently occurring items must be determined 

from multiple data streams originating from dispersed sources. As a result, 

communication costs must be considered. 

1.2 Formal Problem Statement 

In the following subsections we describe the distributed architecture used in our 

monitoring approach. This architecture is the most commonly observed in prior work and 

represents a large number of real world networks (Babcock and Olston, 2003; Cormode 

and Garofalakis, 2005a; Garofalakis, 2005b; Cormode and others, 2005; Keralapura, 

Cormode, and Ramamirtham, 2006). Additionally, we will formalize our representation 

of the data streams observed at each distributed site. Finally, we will provide a formal 

definition to the frequent items problem and it variations. The notation introduced in 

these sections will be used throughout the remainder of this thesis. 

1.2.1 System Model 

The distributed environment used in our method has been defined as a single-level 

hierarchical architecture (Babcock and Olston, 2003). It consists of m + 1 nodes and m 

distributed data streams. Of the nodes, N1, N2, ..• , Nm are used for summarizing the m data 

streams and are called monitoring nodes. Node No is a specialized coordinator node. The 

coordinator node is responsible for displaying the set of frequent items over the union of 

the m distributed data streams. As in previous work, communication is conducted 
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amongst the monitoring nodes and the coordinator. There is no direct communication 

between any two monitoring nodes (Babcock and Olston, 2003; Cormode and 

Garofalakis, 2005a; Cormode and others, 2005). A schematic of this architecture can be 

seen in Figure 1.1. 

Each of the distributed data streams Sj, S2, ... , Sm, is used as input to 

corresponding monitoring nodes N j , N2, ... , Nm• The data streams consist of a sequence of 

tuples ordered by time of occurrence. Each tuple is of the form (OJ, t), where OJ is the 

unique identifier of a specific item of interest pulled from a finite (but possibly large) set 

of allowable identifiers U, and tj is the timestamp of the tuple. Identifiers may be repeated 

any number of times in a data stream. An example of an input stream, corresponding to 

monitoring node Nj, may be Sj = {(2, 0.024), (2, 0.029), (1, 0.050), (0, 0.056,)} where U 

= {O, 1,2, 3}. 

Coordinator Node 

Frequent Item Set 

User 

FIGURE 1.1 - Single-level hierarchical architecture. 
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As stated, each monitoring node maintains a summary of its corresponding data 

stream. This summary is made by managing a set of frequency counts C = {c 1,i, C2,i, ... , 

cn.d, where each Cj.i E C corresponds to an item identifier from the set U. Initially each 

frequency count is equal to zero, and for each input tuple (OJ, tJ> to Ni, Cj.i is incremented 

by one. Therefore, each frequency count in the set C maintains the number of 

occurrences of an item in the data stream Si on monitoring node M. To extend the 

previous example, C] = { 1, 1, 2, O}. 

1.2.2 Frequent Items Problem 

The purpose of the monitoring structure discussed above is to monitor frequent 

items over the union of the distributed data streams. Given an item OJ and corresponding 

counters {cj,l, cp, ... , Cj,m }, we call OJ frequent if LlS;iS;m Cj.i ~ sN, where s E (0, 1) is a 

user defined support parameter and N is the accumulative frequency of all observed 

items. The set of all frequent items F, therefore, contains all items which have occurred 

across the union of the m data streams more than s% of the total number of item 

occurrences. 

1.2.3 Approximate Frequent Items Problem 

Due to the unbounded nature of data streams it is impossible to store them in main 

memory or even secondary storage. This has motivated the creation of a variety of 

summary data structures which sacrifice correctness and provide approximate solutions 

(Li, Lee, and Shan, 2005). These summary data structures require only a limited amount 
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of memory, but provide only approximate frequency counts. To solve the frequent items 

problem with approximate frequencies, an extension has been proposed called the c­

deficient frequent items problem. The definition for this problem we adopted comes from 

the work of Manku and Motwani (2002). 

To extend the previous definition given in Section 1.2.2, the c-deficient frequent 

items problem allows a degree of error on the frequency counts which is bounded by a 

user defined error tolerance parameter c: « s. The membership of an item in the set F is 

modified with the following requirements: 

1. Those whose true frequency exceeds sNare in the frequent item set. 

2. No item whose true frequency is less than (s - c:)N is in the frequent item set 

3. Frequency counts are under counted or over counted by at most c:N. 

The resulting membership test derived from these three points is determined by 

whether the frequency counts are over estimated or under estimated. If the items are 

under estimated, an item is called frequent if Ll~i~ Cj.i ;::: (s - c:)N, where each Cj.i is an 

approximate frequency count underestimating the true frequency of OJ by at most G N. 

1.2.4 Top-K Elements Problem 

The top-k elements problem is very similar to that of finding frequent items. 

Given a set of items 0], ••• , On and corresponding frequency counts, we create a ranked 

list sorted by non-increasing frequency. We return the set which contains the k most 

occurring items, where k is a user defined parameter bounding the size of the list. 
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The top-k elements problem can additionally be used to determine frequent items. 

For a given support parameter s, there can be at most + frequent items (Cormode and 

others, 2005). Therefore, by returning the k most occurring items, where k = +, we are 

guaranteed to have all items OJ E F. However, it is not the case that all reported items are 

frequent. That is, there may also be a large number of items OJ E F reported. 

1.3 Goals 

The goal of this thesis is to study prior solutions and propose a new monitoring 

system for reporting the frequent item set over the union of multiple distributed data 

streams. If more recent item occurrences are to be weighed more than older occurrences, 

extensions must be proposed to allow for reporting only recently frequent items. In both 

cases the system must provide results with exact precision using minimum 

communication overhead. 

In many practical data stream applications, memory requirements are also a major 

concern. As a result, appropriate memory management policies must be proposed which 

can be easily integrated into all nodes within the monitoring system. In this case the 

system may only be able to provide approximate results. We must ensure that these 

approximations reach a high degree of quality with appropriate empirical analysis. 

The final goal of this thesis is to provide a preliminary analysis into the 

applicability of frequent item monitoring at detecting DDoS attacks. This would include 

the analysis of the proposed system against a variety of different attack patterns. 
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Comparisons against other known detection methods will be used to serve as a 

benchmark to measure the detection quality of the system. 

1.4 Organization of Thesis 

Chapter 2 discusses prior solutions for solving the frequent items problem and the 

similar top-k elements problem. In Chapter 3 we introduce our approach for monitoring 

frequent items over distributed data streams. We evaluate our method in Chapter 4 based 

on a series of defined criteria. Chapter 5 examines the applicability of our method for 

detecting DDoS attacks. Finally, Chapter 6 gives closing remarks and future directions. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Single Stream Approaches 

Most prior work on monitoring frequent items focuses on creating stream 

summary data structures. These data structures require a fixed amount of memory but 

sacrifice correctness in the results. That is, the majority of these solutions address the £­

deficient frequent items problem. The summary data structures proposed in prior work 

can be broken up into two categories: 

1. Counter-based Techniques 

2. Time-Sensitive Techniques 

2.1.1 Counter-based Techniques 

Counter-based techniques work by maintaining a subset of counters smaller than 

lui. These methods keep the monitored subset of items small by using various techniques 

depending on the algorithm (Metwally, Agrawal, and Abbadi, 2005). Each technique has 

the common characteristic of bounding memory required and providing strong guarantees 

on approximations based upon a user define error parameter and thus address the £­

deficient frequent items problem directly. 
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One of the earliest known f.-approximate counting techniques was created by 

Misa and Gries (1982). Their algorithm required O( t) space and 0(1) amortized 

processing time per update tuple. The same algorithm was rediscovered independently by 

Demaine et al. (2002) and Karp et al. (2003). They improved upon the algorithm, 

allowing 0(1) worst case processing time per element by arranging counters in sorted 

order using a differential encoding. 

The original Misa-Gries (MG) algorithm did not specify a user defined error 

tolerance. Rather, the algorithm only handled the special case where the error tolerance 

was equal to the support. Recent work has shown, however, that that the algorithm can be 

adapted to handle general error tolerance values (Lee and Ting, 2006). With these 

extensions we enhance the pseudocode representation of the MG algorithm provided in 

(Karp, Shenker, and Papadimitriou, 2003) as shown below. 

Let XlI X21 ••• , XN be a stream of items. 

Let Counters be a list of integers indexed by an item Xi. 

For i = 1 to N do 

If Xi is in Counters Then 

Counters [Xi] = Counters[Xi] + 1 

Else 

Create a counter for XiI and set Counters [Xi] = 1 

If I Counters I >1 / £ 

For each c in Counters 

Counters[c] = Counters[c] - 1 

If Counter[c] = 0 Then Remove Counter[c] 

FIGURE 2.1 - The MG Algorithm 
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Essentially the algorithm maintains a set of counters for each item, decrementing 

1 + 1 counters when there are more than 1 counters in memory. Since there are N items 

in the data stream, we can decrement the counters by at most NI( 1 + 1) < eN times and 

hence all counters have error of at most eN (Lee and Ting, 2006). The traditional 

approach of reporting all frequent items which are under counted, is to report all items 

with frequency greater than or equal to (s - e)·N. 

Around the same time the MG algorithm was being re-discovered two additional 

counting techniques were proposed by Manku and Motwani (2002). The first one, called 

Sticky Sampling is a probabilistic E-approximate counting technique which can provide 

frequency counts under counted by at most e·N with probability of 1 - O. Their method 

works by dividing the data stream up into segments each with an associated non­

decreasing sampling rate. When a new item is observed it is added to the list of counters 

based on this sampling rate. At the end of each segment, when the sample rate changes, 

for each counter we toss a coin decrementing its value by one for each unsuccessful toss. 

If at any time the value of the counter becomes zero we remove it from memory. 

In the same paper Manku and Motwani (2002) proposed a second method, which 

is the more popular of the two, called Lossy Counting. Lossy Counting is a deterministic 

E-approximate counting technique which requires O( 1·log(e'N)) space, but in practice 

performs better on skewed data than both the MG algorithm (Arasu and Manku, 2004) 

and Sticky Sampling (Manku and Motwani, 2002). Their method works by dividing the 

data stream up into r rounds of width 1. When a new item is observed in a round it is 

added to the list of counters, and given the value of the previous round r - 1. At the 
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beginning! of each round, counters with frequency less than or equal to r are removed 

from memory. 

More recently a new counting technique has been proposed by Metwally et al. 

(2005) called Space-Saving. This technique requires at most } counters at any given 

time. Their method works by storing each counter in a list sorted in order. For each new 

item observed a counter is added until there becomes 1 counters in the list. After this 

point is reached, each remaining new counter replaces the counter of the least occurring 

item currently in the list. By managing new counters in this way, frequency counts are 

over counted by at most e·N. Recently, work by Liu et al. (2006) enhanced this approach 

by identifying all counters with frequency less than e·N and replacing the oldest counter. 

The main contribution of their work was the creation of a method in which to store time 

informatidn while using little additional space. They did this by devising a method called 

fractioniz(ltion, where they added the inverse sum of the natural log of each timestamp 

for an item to its frequency count. They thus defined the oldest counter as the counter 

with the smallest sum of timestamps. 

2.1.2 TiIjne-Sensitive Counting Techniques 

Mdst recent work on time-sensitive frequency counts utilizes the concept of a 

sliding window model. Sliding windows consist of the last e item occurrences observed 

in a data stream. The two most common types define e as either a fixed value (fixed-sized 

sliding window) or as variable (variable-sized sliding windows). Each of these two 
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fundamental types can additionally be extended to represent a variety of other sliding 

window models, including time-based sliding windows (Arasu and Manku, 2004). 

Th~ first deterministic £-approximate counting technique for finding frequent 

items oven sliding windows was proposed by Arasu and Manku (2004). Their algorithm 

required C)( 1·log2 1) space and O( 1·log 1) processing time per update tuple for a 

fixed-size ~liding window. The algorithm works by creating a series of copies of the data 

stream, eaph broken up into segments. The size of each segment varies between the 

copies but segment sizes remain uniform within. Each individual segment is constructed 

by running an instance of the MG algorithm. Frequency counts of items are determined 

by examining a selective number of these segments in the different copies, which are 

management carefully to guarantee approximate results. 
, . 

MQre recently Lee and Ting (2006) have proposed a new method which is more 

efficient. lheir method requires only O( 1 ) space and processing time per update tuple 

for repres~nting fixed-size sliding windows. Additionally, they expanded their method 

using a similar approach by Arasu and Manku (2004) to handle variable-sized sliding 

windows Ulsing O( 1·log(c.N)) space and processing time. 

Unlike the previously described algorithm, their method uses the MG algorithm 

directly. Tv maintain frequency counts over a sliding window they replaced each counter 

of the MO algorithm with a special A-counter. Briefly a A-counter represents a data 

stream as a[ sequence of bits each with a labeled position starting at position one. For each 

position tHat the item represented by the counter occurs, a I-bit is recorded at that 

position. l1hese positions are grouped together into A sized blocks indexed sequentially 
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starting a~ index one. A block is defined as significant if it falls in or overlaps with the 

current sHding window and contains the (iA)th I-bit (or the (iA)th occurrence of the item) 

where i ~ 1. The value of the A-counter is thus defined as A·IQI + I where Q is the list of 

significant blocks and I is the number of ones (or occurrences) observed since the last 

significant block. For example in Figure 2.2, if we define A = 2 and the size of the 

window a~ 10, the list of significant blocks Q = {3, 5}. The resulting value of the A-

counter is Ithus equal to five. 

po$ition 1 2 3 4 5 6 7 8 9 10 11 12 

bitlstream 1 1 1 0 0 1 1 0 1 0 1 0 
bldck 1 2 3 4 5 6 

FIGURE 2.2 - Example problem using A-counter 

2.2 Cehtralized Monitoring Approaches 

Mqny monitoring systems process multiple distributed data streams by forwarding 

update tuples to a centralized node (Babcock and others, 2002). At this node each 

received update tuple can be modeled as only a single data stream in a straightforward 

fashion. 1l'his is beneficial, since a large number of single stream frequent item 

monitoring methods have been proposed (see Section 2.1). Most of these methods are 

optimized Ito require minimal space and processing time. Despite these optimizations, 

however, the response time of a centralized approach may still be long. It is likely that the 

merged siljlgle stream will be very large, thus requiring a large amount of data to be 

processed. Additionally, forwarding each data stream will result in heavy communication 
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congestion and in some cases it is not feasible (Aggarwal and others, 2006). For example, 

examine t~e case where the data streams are being collected by distributed wireless 

sensors. Ifl. this environment the power consumption for each sensor is dominated by the 

amount communication involved (Madden and others, 2003). Thus forwarding the data 

streams wW likely result in low battery life for each sensor. 

2.3 Di~tributed Monitoring Approaches 

To : alleviate some of the short comings of the centralized monitoring approach, a 

variety of distributed solutions have been developed. All these solutions have two 

important characteristics which make them more efficient. First each distributed 

monitoring node conducts some of the processing locally. Second communication is only 

conducted when certain criteria is reached or when results are requested. Additionally, 

when communication does occur, only a concise summary of the local data stream is 

transmitted. These two characteristics allows distributed monitoring approaches to both 

reduce the! amount of communication needed and decrease the processing time by 

utilizing distributed resources. 

Pri<1>r work on finding frequent items using the distributed approach can be broken 

into two categories. The first category consists of methods defined as one-time query 

approaches,. One-time query approaches only provide results once over a point in time 

(Babcock a'nd others, 2002). These methods are not designed for continuous monitoring, 

but can be irepeated within short time intervals to simulate results (Babcock and Olston, 

2003). The: second category consists of methods defined as continuous query approaches. 
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Continuo~s query approaches provide at any time, the results equal to the output of a one­

time query approach (Golab and Ozsu, 2005). 

2.3.1 Ode-Time Distributed Approaches 

Th~ recent one-time query approach by Manjhi et al. (2005) addressed the 

problem M determining time-sensitive (recent) frequent items over distributed data 

sources. they did this by installing an £-approximate counting technique at each 

monitorin~ node, and transmitting local frequency counts every T time units to a 

centralized node. Upon receiving the local counts, they are combined with previously 

received cpunts. More emphasis is placed on recent item occurrences by deprecating 

previouslyireceived counts in an exponentially decaying fashion. 

Th¢ authors realized that transmitting all frequency counts to a centralized node 

would res41t in excessive communication cost. Additionally, if there are a large number 

of monitOIjing nodes, the centralized node will be overwhelmed by the amount of data 

received. To address this issue, they proposed using a multi-level hierarchical 

communic~tion architecture to reduce the load on the centralized node. A multi-level 

hierarchicaiI communication architecture is very similar to the single-level architecture 

introduced jin Section 1.2.1. The only difference is the introduction of intermediate nodes 

between tHe monitoring nodes (defined as leaf nodes) and the centralized coordinator 

node (defined as the root node) (Cormode and Garofalakis, 2005b). In Figure 2.3 we give 

an exampld of a three-level hierarchical communication structure. 
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Coordinator Node(RooQ 

Intermediate Nodes 

Monitoring Nodes 
(Leaves) 

Frequent Item Set 1----.. User 

.... 

•• 

Ss 

FIGURE 2.3 - Multi-level hierarchical communication architecture. 

TM intermediate nodes were used by the authors to additively combine the 

frequency 'counts received from their child nodes. Additionally, they introduced the 

concept of a precision gradient to reduce communication load on any single link. 

Roughly speaking, the £-approximate counting techniques installed on each leaf node 

(monitoring node) undercounts the true frequency of an item. Frequencies of value zero 

do not need to be transmitted. Instead of introducing the maximum amount of error at the 

leaf nodes,! they varied the degree of error tolerance at each level. The authors provided 

strategies for setting the error tolerance at each level, and demonstrated that their 

strategies Worked well for reducing both load on the coordinator node and reducing load 

on any single communication link. 

SeV1eral approaches for solving the similar problem of finding the top-k items in 

the distributed data stream environment have been introduced. All these methods have 

shown to successfully reduce communication cost. One related group of algorithms is the 
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threshold pased algorithms described by Yu et ai. (2005) in their recent work. Each of the 

algorithm$ described (TPUT, TPAT, TPOR, and HPT) requires three steps which are 

generalize~ as follows: 

1. : Step 1: The local top-k list of each monitoring node is collected at a 

centralized node. 

2. Step 2: The information gathered at the centralized node is used to assign each 

monitoring node a threshold or supplies it with information needed to create a 

• threshold. Each monitoring node responds with a list of items, each with 

i frequency greater than the given threshold. The response is then used to create 

• a top-k candidate set. 

3. ! The exact frequencies are collected for each item in the candidate set and the 

top-k items are reported. 

Tht goal of each of these steps is to gather successively more information about 

the items ~bserved in the network to reach a final consensus on the global top-k set. This 

is in contr~st with simply forwarding all item frequencies to a centralized node. Ideally 

the thresh~ld based approaches will only gather information on a subset of items, thus 

reducing tljle amount of communicated when compared to the simpler approach. 

2.3.2 Coptinuous Distributed Approaches 

Th¢ most recent work to address the issue of continuous monitoring over 

distributed! data sources was the work of Cormode et al. (2005) which was later 

expanded. !The expanded approach required O( 12 -log t) space and O(log t) time per 
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update tuWle, where c is a user define error tolerance and t5 is a probability of failure 

(Cormode! and Garofalakis, 2005a). Additionally, their analysis showed that the worst 

case comtilunication cost for their method was comparable with that of periodic one-time 

approache~. 

Both the methods in (Cormode and others, 2005) and in (Cormode and 

Garofalak~s, 2005a) work by maintaining at each monitoring node a summary of the 

observed local data stream and a corresponding predication model. Throughout the 

monitoring process each monitoring node compares its local summary with its 

correspon4ing prediction model. If the prediction model deviates from the actual local 

summary by more than a user defined error tolerance, the local summary (and possibly a 

new predi~ation model) is communicated to a centralized node. Thus if the prediction 

model apptoximates the actual data stream effectively, no communication is needed. 

Sinpe the centralized node at all times contains the approximate frequency counts 

of all items, this method is able to answer a variety of different queries. Included is the 

ability to rrilonitor top-k items and provide a list of heavy hitters. Heavy hitters in this case 

is not the: same as the E-deficient frequent items problem. Since we only have the 

approximate frequency counts, we return all items which are above s.fl, where N is the 

sum of all ~pproximate frequencies which estimates N. 

Previously, Babcock and Olston (2003) addressed explicitly the problem of 

monitoringl the top-k items in the distributed environment. The basic concept for their 

method w~s to maintain at each monitoring node the global top-k set locally. 

Conceptua'ly, this was done by shifting the frequencies of items amongst the monitoring 
, 

nodes. Thi$ shifting was done in the fashion so that the adjusted frequency of each item 

19 



in the glObal top-k set was greater than the adjusted frequency of any item not in the 

global to~-k set. As long as this arrangement of adjusted frequencies remained, the 

validity oil the global top-k set sat unchanged. 

In ~he event that a monitoring node can no longer maintain the global top-k set, a 

process c~lled resolution was initiated. The process of resolution may result in one of two 

outcomes: 

1. The coordinator determines that the global top-k set has remained unchanged 

· by using a subset of frequency counts from the invalidated monitoring node 

: and locally stored frequency counts gathered during the process of shifting 

item frequencies. In this scenario communication is only required amongst the 

coordinator node and the invalidated monitoring node. 

2. i. The coordinator calculates the new global top-k set by gathering a subset of 

· frequency counts from each monitoring node. Frequencies are then shifted 

• once more so that the new global top-k set is now maintained on each 

monitoring node. In this scenario communication is conducted amongst the 

,coordinator node and all monitoring nodes. 

Ad~itionally, Babcock and Olston (2003) introduced another method which they 

called the caching approach. This method worked in a similar fashion as the previously 

discussed ialgorithm proposed by Cormode and Garofalakis (2005a). The caching 

approach r~quired that each monitoring node send the frequency of an item with value 

greater thap #z its previously sent frequency to the coordinator node, where £ is a user 

defined errbr tolerance and m is the number of monitoring nodes. 
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CHAPTER 3 

FREQUENT ITEM MONITORING 

3.1 Ov~rview 

In this chapter we propose a new monitoring approach for solving the frequent 

items pro~lem in the distributed data stream environment. Our method is a direct 

modificati~n to the top-k monitoring approach by Babcock and alston (2003), in which 

will we c,ll Top-K Monitoring. Briefly, instead of maintaining the global top-k set 

locally on fach monitoring node we will maintain the global frequent item set. 

In $ection 3.2 we will introduce, in detail, the steps required to maintain the 

global freqpent item set locally on each monitoring node. In this section, we will assume 

that the go~l is to monitor the exact frequent item set. To provide exact answers we must 

store a fre9uency count for each unique item observed in the data stream. 

In Section 3.3 we will introduce the modifications needed to provide the 

approxima~e frequent item set. The goal in this section will be too reduce memory 

requireme~ts by utilizing the summary data structures introduced in Section 2.1. 

Although ~op-K Monitoring provided approximate results for the top-k elements 

problem, t~ey did not utilize these prior summary structures. As a result, their monitoring 
, 

approach *ill required a counter for each unique item observed despite introducing 

approxima~e results. 
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Fihally in Section 3.4 we will examine ways to solve the recently frequent items 

problem. That is, we will examine ways to weigh recent item occurrences more than 

older on~s. In the same fashion as the previous sections, we will begin by first 

introduci~g ways to provide the exact recently frequent item set and then introduce 

methods t¢> provide approximate results with the goal of reducing memory required. 

3.2 E~act Frequent Item Monitoring 

Th~ frequent item monitoring approach begins with an initialization phase. There 

are three ways to accomplish this task. One option is to issue an efficient one-time 
! 

distributed frequent item query (see Section 2.3.1). The advantage of this approach is that 

communicption is only conducted after the initialization time period has ended. 

Additionallly, when communication does occur, only a concise summary of the initially 
! 

observed data stream will be transmitted. Although initial communication cost is minimal 

with this a~proach, the same causes for this are also its downfall. That is, the drawback of 

this appro~ch is that the monitoring process will not begin until the initialization time 

period has Ipassed. It is also not clear how long of an initialization period is needed. If the 

initializati4n period is too short, there may not be a significant reduction in 

communic~tion when compared to other approaches. 

Th~ second initialization option is to forward all update tuples to the coordinator 

node. Thisi method is representative of a centralized monitoring approach (see Section 

2.2). Since, all update tuples will be forward to a centralized node, initial communication 

cost may be high. However, the monitoring process will be able to begin immediately, 

since the c¢ntralized coordinator node has full access to the frequency of all items. 

22 



Fi~ally, the third option is to simply begin our monitoring method immediately. 

I 

Once the rystem starts, if no items have been observed their frequencies will be zero. 
, 

I 

That is, th~ set of frequent items is empty and does not need to computed. This approach 

simplifies !the initialization phase since we do not need to design a specialized method. 

Additiona~ly, we do not need to be concerned with setting an initialization time period. 

On~e the initialization phase is completed, the coordinator node sends to each 

monitor ttie current frequent item set. Similar to Top-K Monitoring, we maintain the 

global frequent item set locally on each monitor. To do this we have designed a series of 

parameteri~ed constraints (or local requirements) which are installed on each monitoring 

node. The~e constraints are used to detect if the global frequent item set has changed over 
, 

I 

time, and qonsists of two core components. 

Th¢ first component of the parameterized constraints is a local threshold value Ti , 
I 

kept by e~ch corresponding monitoring node M. Initially Ti = 0 and for each item 

occurrenc~ observed at node N i , including any observed during the initialization phase, 

we incremfnt Ti by the user defined support value s. By incrementing the threshold value 

in this fas*on it is clear that Ti = s·!Sd, where lSi! is the number of update tuples in the 
I 

! 

locally obs~rved data stream, or in other words, the total number of locally observed item 

occurrencef. If we sum the threshold values for each monitoring node we see that T = 

LlsiSm Ti != LISi::;m S·!Si! = soN, since by definition N is the total number of item 

occurrence~ observed across all nodes. 

Th~ second component of the parameterized constraints is a series of adjustment 

factors. T~e notation for these adjustment factors are borrowed from the Top-K 

Monitorin& method and are used in a similar fashion (Babcock and alston, 2003). For 
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each iteni OJ and node Ni we define a corresponding adjustment factor 0,i. For the 
I 

correctne~s of our monitoring method, we require that each adjustment factor meet three 

requirem~nts: 

1. ' For each item OJ, its corresponding adjustment factors must sum to zero across 

all nodes: Losism 0,i = O. 

2 .. For each item OF E F, its corresponding adjustment factor stored at the 

! coordinator node is greater than or equal to zero: ~,o ~ O. 

3. For each item OF ~ F, its corresponding adjustment factor stored at the 

coordinator node is less than or equal to zero: ~,o ::;; O. 

W~th the two core components of the parameterized constraints described, we can 

now showl how they are defined and how they are used to determine if the validity of the 

global fre1uent item set has changed. For each item observed at monitoring node Ni , the 

following tonstraints are installed: 
I 

1. ~ If an item OJ EF, then the installed constraint is defined: Cj,i + 0,j ~ h where 

i Cj,i is the frequency count of OJ and 0,j is the adjustment factor corresponding 
, 

to item oj-

2. ! If an item OJ ~ F, then the installed constraint is defined, Cj, i + 0, j < h 

If all the p~rameterized constraints hold for each node, then for every OJ E F, LlSiSm Cj,j + 
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W¢ see now that our monitoring method works by dividing the global threshold 

sN, whic~ determines which items are frequent, amongst each monitoring node. We then 

shift item joccurrences amongst the nodes in the form of adjustment factors. As long as 

the adjust~d frequency of each frequent item OJ (Cj,i + 0,;) is above the local threshold 

(Ti), or if infrequent below the threshold, on each monitoring node then validity of the 

global frequent item set holds. At any time in which a constraint is broken, a process 

called reso~ution is initiated. 

3.2.1 Re$olution 

WHenever a local parameterized constraint is broken on any monitor node a three 

phase proc¢ss called resolution is initiated. The purpose of this process is two-fold. First, 

the validity of the global frequent item set is checked. If the global frequent item set has 

changed, we must notify all monitoring nodes with the list of new frequent items and the 

list of all items no longer frequent. Second, at the conclusion of the process, item 

frequencieS are shifted in the form of adjustment factors so that all local constraints 

become vaJid. The resolution process we use is a modification to Top-K Monitoring. All 

modificatic)ns made are described below. 

To ~egin the resolution process, in Phase 1, the monitoring node containing the 

invalid constraint NJ sends a message to the coordinator. The contents of this message 

include: th~ frequency counts, corresponding adjustment factors, and item identifiers of 

all items iijvolved in an invalid constraint. Once the information regarding each invalid 

constraint ~s sent to the coordinator, the local threshold value Ti is transmitted. Note that 

informatiot!t regarding the frequencies of every item which is a member of the frequent 
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item set i~ not needed. The membership of any item in F is independent of any other 

item. Thi$ property is distinctive of our monitoring approach. In Top-K Monitoring, 

when any! constraint is broken, information regarding all items with broken constraints 

and the gl¢>bal top-k items are transmitted to the coordinator. As a result, the message size 

is considetably large when k is assigned a large value. As we will see later, the reduced 

format of ,our messages will play an important part in reducing overall communication 

cost. 

On~e all relevant information is gathered at the coordinator node the second phase 

can begin.: In Phase 2, the coordinator attempts to determine if the global frequent item 

set remains valid. Recall in our definition of adjustment factors, for each item OJ the 

coordinator node may have an corresponding adjustment factor O,0 stored locally. As a 

result, the icoordinator may be able to sacrifice a portion of it's locally store adjustment 

factors to node N/ in order to restore invalid constraints. In order to ensure if this is 

possible, fbr each violated constraint the coordinator performs the following validation 

tests: 

1. If OJ E F then the test performed is Cj, / + O, / + o' ° ~ T/ . 

2. If OJ ~ F then the test performed is Cj,/ + O,/ + O,0 < T/ . 

If all vali4ation tests pass, then a process called reallocation is initiated (see Section 

3.2.2) and : resolution terminates at Phase 2. All interactions involved from initiation of 

resolution to termination after resolution is depicted in Figure 3.1. If anyone test fails 

during val,dation testing, however, we are not able to determine if the global frequent 

item set ha~ changed. At this point more information is needed and the resolution process 

continues. 
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Coordinator Node 

Phase2 
1-----' r-----' 
1 Validation! _ ! .: 
1 Testing t--------r' Reallocation 
1 1 1 1 

J I 1 "------ -- ------

Phase 1 
Message 

Monitor Node I 

Reallocation 
Response 

FIGURE 3.1 - Reallocation termination after Phase 2. 

In the final phase of resolution, Phase 3, the coordinator must contact all 

remaining monitoring nodes. That is, for each node N; : i :F- I, the coordinator node must 

request information regarding each item involved in an invalid constraint. Response 

messages in this phase, is of the same format as that received from node NJ in Phase 1. 

With complete knowledge on the global frequency of each item involved and the global 

threshold, the coordinator node can now determine if the global frequent item set has 

changed directly. Notice that Phase 3 can be labeled as a (re)synchronization phase, since 

all monitoI1s in the network are contacted and given the new frequent item set (shown in 

Figure 3.2). To conclude this final phase, the coordinator initiates the reallocation 

process. 
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Coordinator Node 
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, , , 'I , 
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\ 

Reallocation \ 

I 
Response \ 

I 
Phase 3 I 

Requ$t / Response " 
Message I 

Monitor Node 1 

Phase 1 
Message 

Monitor Node I 

\ 
Phase 3 \ 

Request/ Response \ 
Message \ 

Monitor Node m 

FIGURE 3.2 - Reallocation termination after Phase 3. 

3.2.2 Reallocation 

Before the resolution process can terminate, adjustment factors must be 

reassigned in such as fashion that all constraints are satisfied for the current global 

frequent item set. This requires that item occurrences must be rearranged amongst all the 

nodes involved in the resolution process. Borrowing from Top-K Monitoring, we call 

these set af nodes 11 the participating nodes. If resolution terminated after Phase 2, then 11 

= {NI• No}, otherwise, 11 = {No, Nl , ... , Nm} (Babcock and Olston, 2003). The process 

responsible for these reassignments is called reallocation. Like resolution, this process is 

a modification of the same process found in Top-K Monitoring. The process and changes 

made are mow described. 

The first step of reallocation is the summation process of all available 

information. That is, we sum the value of each available adjusted frequency (frequency 

plus the adjustment factor) for a given item involved in an invalid constraint. 
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Additionally, we sum all threshold values received from monitoring nodes in 11. If 

reallocation was initiated by Phase 3 of resolution, then the summation process will give 

us the global frequency for each item and the global threshold. On the other hand, if it 

was Phase 2 that initiated reallocation, then we only have the partial frequencies of each 

item and the threshold of N/. Since only adjustment factors are stored at the coordinator, 

the partial frequencies in this case will be equal to Cj,/ + 0,/ + O,0, for a given item OJ. 

Once summation is completed, we calculate the distance !J.j of each aggregated frequency 

from the aggregated threshold. 

The second step of reallocation is the "tightening" process. For each monitoring 

node ME 11 and item OJ, we assign a new adjustment factor O'j,i so that that the adjusted 

frequency is equal to the local threshold value. Doing this step alone is enough to 

guarantee that each item in the global frequent item set will have valid constraints, since 

the adjusted frequency Cj,i + O'j,i = Ti , for any given item OJ and monitoring node Ni E 11 

involved in the process. 

The final and third step, assigns a portion of !J.j to each new adjustment factor 

assigned in the previous step. The amount added is based on an allocation parameter 0 :5 

Fi < 1 corresponding to each node Ni. Allocation parameters are defined in such a fashion 

to control the amount of !J.j allocated to each node and is required that LO:S:i::illJ Fi = 1. This 

notation is similar to that of Top-K Monitoring with the exception that Fo::t: 1. That is, we 

can not assign !J.j entirely to the coordinator node. Any item OJ E F must have a value less 

than its local threshold. As a result of this requirement and the assignments made in the 
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previous step, we must therefore assign a portion Ilj to the new adjustment factors in 

order for all constraints to be valid. 

Given the description above, the reallocation procedure can be expressed formally 

with only two expressions. 

1. Ilj = LiEll Cj,;+ LiEll 4,; -LiEll Ti 

2. 8 j,i = Ti - Cj,i + Frllj 

The first expression represents the summation process, while the second expression 

represents final steps. For each item OJ involved in a violated constraint and node in 11, 

both expressions are evaluated to determine the new adjustment factor 8 j,i where i E 11 

represents node N i . Comparing these two equations to those used in Top-K Monitoring 

will show that the reallocation method originally designed can be re-used. Assigning the 

parameters used in Top-K Monitoring appropriately will result in the definitions given 

above. 

3.3 Approximate Frequent Item Monitoring 

In the previous section we introduced a modification to Top-K Monitoring for 

continuously tracking the exact global frequent items. In order to allow exact solutions, 

counters for each unique item observed must be kept. The value of each counter must 

represent the true frequency of its corresponding item at all times. If the number of 

unique items observed in the data stream is large, this will result in impractical memory 

requirements. For example, consider the problem of tracking frequent users to a website 

based off the user's IP address. With the new IP version 6 addressing scheme it is 
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possible to have up to 2128 or 3.4.1038 unique IF addresses, and thus a large number of 

corresponding counters (Hinden and Deering, 2006). 

To reduce and bound memory requirements for our monitoring approach, we 

reviewed a number of summary data structures (See Section 2.1.1). Each of these 

summary structures reduces memory requirements at the cost of providing approximate 

frequency counts. If we can integrate one of these structures into our monitoring nodes, 

then this would allow us to bound and reduce memory requirements across the network. 

However, integrating these structures into our monitoring nodes will only allow our 

method to provide approximate results or the e-deficient frequent items. 

3.3.1 Summary Structure Selection 

To decide which summary data structure to integrate into our monitoring nodes, 

we referenced the work of Metwally et al. (2005). As previously discussed, the authors 

introduced a new counter-based summary structured called Space-Saving. Also included 

in their work, however, is an extensive comparison of their proposed method with two 

other summary data structures. These two methods included the MG algorithm and 

another summary structure called GroupTest. The results of their comparisons indicated 

that the MG algorithm consistently ran faster and used five times less space than the 

Space-Saving method. However, the MG algorithm produced a significantly larger 

number of false positives. That is, it identified a large number of items as frequent which 

was not frequent in reality. Of the three techniques analyzed, Space-Saving produced the 

fewest false positives. Therefore, if the quality of the results is the leading factor in our 

selection process, Space-Saving is the likely candidate to use to integrate into our 
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monitoring nodes. However, a quick observation of the MG algorithm shows that we can 

greatly improve upon the quality its results. 

Recall, from Section 2.1.1, that in the single stream approach if a new item is 

observed and there are more than k counters currently in memory, the MG algorithms 

proceeds to decrement all counters by one. These decrements account for the error 

introduced in each frequency count. The maximum number of decrements was 

determined to be c·N. That is, each frequency count is at most under counted by cN (Lee 

and Ting, 2006). Finally, a frequent item was defined as any item which has frequency 

greater than or equal to (s - c) N. 

Let j define the true frequency of an item which is frequent, we see that if the 

frequency is undercounted by the maximum amount, thenj - cN;::: sN - cN or simply j;::: 

sN. However, in practice this worst case is observed rarely. That is, it is unlikely any 

counter is undercounted by cN, but rather undercounted by a value less than cN. From 

this observation we modify the threshold used by the MG algorithm to report all items 

with frequency greater than or equal s N minus the number of decrements. With this 

modification in the threshold we will see that the quality of the MG algorithm is now 

comparable to that of Space-Saving. Additionally, we saw that the MG algorithm out­

performed Space-Saving in all other parameters. Thus, we selected this counting 

technique to integrate into our monitoring nodes. 

The integration of the MG algorithm into our monitoring nodes requires two 

steps. The first step requires that we now maintain the frequency counts in the matter 

required by the MG algorithm. The second step is that we must redefine the local 
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threshold values. For monitoring node Ni we now define the local threshold Ti as the 

number of item occurrences observed locally, minus the number of decrements 

introduced locally. More formally, Ti = S·ISil - di where di is the number of local 

decrements. Similar to our previous analysis, if we sum the threshold values for each 

monitoring node we see that T = Ll:5i:5m Ti = Ll:5i:5m s·ISd - di = sN - D, where D 

represents the total number of decrements observed which can be at most eN. 

3.3.2 Approximation Bounds 

Equally important to reducing and bounding memory requirements, is to provide 

guarantees on the approximations made on each frequency count. In the single stream 

approach the MG algorithm under counts any frequency by at most eN (Lee and Ting, 

2006). We will now show that equal guarantees can be made by integrating the MG 

algorithm into each monitoring node. 

THEOREM 1. Let each monitoring node maintain local frequency counts using 

the MG algorithm. For any given item OJ, it global frequency Cj,. is at most undercounted 

by eN. 

PROOF. Each monitoring node uses the MG algorithm to summarize a single 

stream of size ISil. Substituting N with lSd, each approximate frequency count Cj,i at all 

times Cj,i - f:·ISil ~ C j,i ~ Cj,i' Summing across all monitoring nodes, to get the global 

frequency, thus yields Ll:5i:5m (Cj,i - f:·ISil) = Ll:5i:5m Cj,i - Ll:5i:5m f:·ISil ~ Ll:5i:5m C j,i ~ Ll:5i:5m 

Cj,i' Since by definition Ll:5i:5m ISd = N, we see that Cj,. - f:N ~ Cj,. ~ Cj,.' Thus the global 

frequency of any item is at most undercounted by f:.N. o 
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3.3.3 Adjustment Invariant Maintenance 

The MG algorithm selected to be integrated on each monitoring nodes does not 

store in memory any counter with frequency equal to zero. Additionally, the method may 

decrement counters until the frequency becomes zero. However, recall for each counter 

Cj.j there is a corresponding adjustment factor 4,j. If the corresponding adjustment factor 

4,j:t 0, we can not remove it from memory. Doing so would result in the sum of all 

associated adjustment factors to not equal zero. This will clearly invalidate our first 

adjustment factor requirement, and thus invalidate our entire frequent item monitoring 

approach. Therefore, before we remove counters from memory appropriate steps must be 

taken to manage the adjustment factors carefully. 

When removing a counter Cj,i with frequency of zero, the corresponding 

adjustment factor 4,j may be in one of three states. The first state is when the adjustment 

factor ~j'i = 0. In this scenario counter Cj.j and its corresponding adjustment factor 4,j can 

be removed from memory directly. The counter no longer has any value to the 

monitoring process, and removing it from memory will not affect the sum of associated 

adjustment factors. The second state is when the adjustment factor 4,j > 0. In this 

scenario we cannot remove the counter from memory, since its adjustment factor still 

holds value. We therefore continue to store the counter in memory until 4,j = 0, or until 

the first state is reached. The third and final state, is when the adjustment factor 4,j < 0. 

In this scenario we forward the value of the adjustment factor to the coordinator resulting 

in the new value of 4,j = 0, or in other words resulting in the state change to the first 

state. At this point the counter and associated adjustment factor are removed from 

memory. 
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When the coordinator receives an adjustment factor corresponding to item OJ from 

a monitoring node Nd, we require that it be redistributed to the other monitoring nodes. 

More precisely, we select a subset of monitoring nodes with corresponding adjustment 

factor 0,i > 0. Theorem 2 shows that it is always the case that at least one such 

monitoring node exists. 

THEOREM 2. If there is an adjustment factor 0,d < ° with corresponding counter 

Cj,d = ° at node Nd, then there exists a monitoring node N p containing 0,p > 0. 

PROOF. With adjustment factor requirement 1 we know that LOS:iS:ffi ()j,i = 0. Thus 

if there is a ()j,i < 0, there must be a node Np containing corresponding <'>j,p > 0. Since the 

adjustment factor is ()j,i < ° and its corresponding counter Cj,i = 0, we know that the item OJ 

is globally infrequent. This must be true since we require the adjusted frequency (Cj,i + 

()j,i) of any globally frequent item to be less than the local threshold Ti ~ 0. With 

adjustment factor requirement 3, we know that ()j,p is not at the coordinator node. Thus ()j,p 

is located on a monitoring node Np• o 

To determine the set of monitoring nodes with adjustment factors 0,i > 0, we can 

store all adjustment factor assignments at the coordinator node to prevent polling. With 

this knowledge the coordinator can both determine which nodes to forward the negative 

adjustment factor to and how much of its value to forward to each. We only want to 

forward enough so that to cancel the positive adjustment factor out at the receiving nodes. 

Making the receiving nodes adjustment factor negative will require us to forward to the 

coordinator once again at a later time. This would result in wasted communication cost. 

Finally, the coordinator itself may also contain an associated adjustment factor. 

This adjustment factor will be negative since the item in question is globally infrequent. 
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As a result, whenever the coordinator is assigning new adjustment factors, if its 

determined that there are no longer any monitoring nodes containing a negative 

adjustment factor, the coordinator must redistribute it owns negative adjustment factor. 

This may occur upon receiving a forwarded adjustment (see Appendix II for process 

description) or during the reallocation process. In both cases the coordinator node must 

also include its own negative adjustment factor in each new assignment made. 

The overall purpose of the described adjustment factor maintenance policy, is to 

remove all adjustment factors corresponding to item OJ with global frequency Ll~i~m Cj,i = 

O. In this scenario there is no need to maintain the frequency count of such an item on any 

monitoring node. Therefore, we take advantage of adjustment factor requirement 1, to 

remove any remaining positive adjustment factors. 

3.3.4 Memory Requirements 

With the method for maintaining both the frequency counts and their 

corresponding adjustment factors we can now determine the memory requirements for 

both the monitoring nodes and the coordinator. 

THEOREM 3. Each monitoring node uses at most O( ~) counters and 

corresponding adjustment factors. 

PROOF. Using the MG algorithm and the adjustment factor maintenance policy 

given, we know that there are at most 1 plus any positive adjustment factors. In the 

worst case each item observed locally on each node is unique globally and requires an 

associated adjustment factor. In this case each monitoring node will have ~ positive 
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adjustment factors plus its own local 1 counters. Adding these two totals together, we 

see that the memory requirements is O( .z:p. ). o 

Since the coordinator only stores adjustment factors we can also bound the 

memory requirements. 

THEOREM 4. The coordinator node has at most O( "J:2 ) adjustment factors stored 

in memory. 

PROOF. The coordinator node maintains the adjustment factor assignments made 

to each node. In the worst case each item observed locally on each node is unique 

globally and requires an associated adjustment factor. If this is the case, we have .z:p. 

unique items in the system and .z:p. ·(m + 1) adjustment factor assignments. Thus the 

coordinator node stores at most O( "J:2 ) adjustment factors in memory. o 

3.4 Recently Frequent Item Monitoring 

To weigh new item occurrences more than older ones, we can adopt directly the 

sliding window model. We select this model since it is the most often used in practice 

(Zhu and Shasha, 2003). The concept of sliding windows was introduced in Section 2.1.2. 

How sliding windows can be integrated into our monitoring approach is now discussed. 

For monitoring exact recently frequent items, item occurrences must be buffered 

in memory. If we are using a time-based sliding window (an example of a variable sized 

sliding window), item occurrences within the last t time units must be buffered (Arasu 

and Manku, 2004). On the other hand, if we are using a count-based sliding window (an 
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example of a fixed size sliding window) we must buffer the last e item occurrences in the 

data stream (Demaine, Lopez-Ortiz, and Munro, 2002). Along with the buffered data 

stream, we must still maintain frequency counts for each observed item. Using either 

sliding window types, item frequency counts may be decremented to zero and have an 

associated adjustment factor. To prevent adjustment factors from accumulating and to 

free additional space for the window buffer, we can manage adjustment factors in the 

same fashion as described in Section 3.3.3. 

If the observed data stream is very large, buffering it entirely into memory may 

not be practical. As a result, approximate solutions can be given using the time-sensitive 

counting techniques introduced in Section 2.1.2. Additionally, the most recent time­

sensitive counting technique, introduced by Lee and Ting (2006), uses the MG algorithm 

directly. Integrating this method into our monitoring method requires the same steps 

introduced previously in this work. 
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CHAPTER 4 

EXPIREMENTAL EVALUATION 

4.1 Data Sets and Monitoring Description 

We implemented our frequent item monitoring approach in JAVA to simulate the 

behavior of the proposed method. All interactions between the monitoring nodes and the 

coordinator node were simulated on a single machine. Various statistics were gathered on 

each simulation run to measure the performance of our method. The descriptions of some 

of these statistics are given in Section 4.2. 

The data sets used to represent the distributed data streams was acquired from the 

Internet Traffic Archive. The Internet Traffic Archive is a data set repository used to 

provide network traces to study network dynamics, usage characteristics, and growth 

patterns (ita.ee.lbl.gov, 2000). The data sets publicly available include: LAN and WAN 

packet traces, HTTP logs from web servers, and raw internet routing data. 

To evaluate our modifications to Top-K Monitoring for tracking frequent items, 

we selected two data sets. The first data set consists of wide-area network traffic between 

Lawrence Berkeley Laboratory and the rest of the world (Paxson and Floyd, 1995). The 

data set was created using tcpdump, capturing approximately 1.8 million TCP packets. 

Information gathered on each packet include: timestamp, source addresses, destination 

address, source TCP port, destination TCP port, and number of bytes communicated. All 
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addresses were renumbered using a collection of scripts to preserve the privacy of the 

network users. A few example packet records collected are given in Table I below. 

TABLE I 

LAWRENCE BERKELEY LABORATORY EXAMPLE DATA 

Timestamp Source Destination Source Destination Bytes 
C!lS) Address Address TCP Port TCP Port Sent 

0.010445 2 1 2436 23 2 

0.023775 1 2 23 2436 2 

0.026558 2 1 2436 23 1 

0.029002 3 4 3930 119 42 

7199.999857 399 138 1663 23 0 

For our simulation experiments we monitored frequent users (source addresses). 

As a result, we did not need all six fields and created a new text file containing only the 

timestamps and source addresses. Additionally, the TCP packets for this data set were 

collected on a single node. To simulate a distributed environment we evenly assigned the 

records amongst four monitoring nodes. 

The second data set used in our evaluation, consisted of the 1998 World Cup web 

site logs (Arlitt and Jin, 1998). The logs were gathered between April 26 and July 26, 

1998 containing web requests made to each of the 33 available web servers. Each HTTP 

request gathered contains: timestamp of the request, client ID who made the request, ID 

of the requested item, bytes of the response, method, status code, format of file requested, 

and server ID which handled the request. 
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For our simulation experiments we used the June 9th logs of the 1998 World Cup 

data set, which contained approximately 20 million web requests. On this day only 26 of 

the 33 web servers were active, thus we used 26 monitoring nodes. To goal of our 

monitoring process was to track frequently requested items by users. Similarly to the 

Lawrence Berkeley data set, we did not need all the data fields provided. Therefore, we 

created a new text file containing only the timestamp, requested item ID, and server ID 

which handled the request of each record. 

4.2 Input Parameter Summary 

The Top-K Monitoring method required a series of user defined parameters in 

order to monitor the top-k elements effectively. Since our monitoring approach is an 

extension, we too must define a series of parameters. Each of these parameters may affect 

the performance of our method in a variety of ways, therefore, must be examined in our 

experimental evaluation. These parameters are briefly reviewed in this section. 

4.2.1 Support Parameter 

In our definition of the frequent items problem given in Section 1.2.2 the user 

must define a support parameter s. This support parameter affects the threshold used to 

define when an item is to be characterized as frequent. Theoretically, there can be at most 

t frequent items (Cormode and others, 2005). From this property it is clear that when the 

support parameter is lowered more items can potentially be classified as frequent. When 

the support parameter is raised, however, fewer items can potentially be classified as 

frequent. 
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4.2.2 Error Tolerance Parameter 

In Section 3.3 we introduced methods to reduce memory requirements by 

integrating an E-approximate summary data structure onto each monitoring node. The 

amount of error was found to be bounded by a user defined error tolerance parameter c. 

The higher the value of c, the less trustworthy the frequency counts are for a given item. 

However, the benefit gained from this is in reduction of memory required. Although this 

parameter can be set to any value less than s, it is generally given the value of 10% the 

support parameter (Manku and Motwani, 2002). 

4.2.3 Reallocation Parameters 

Recall from Section 3.2.2, that the final step of reallocation is to assign a portion 

of /).j to each new adjustment factor corresponding to counter Cj,i on monitoring node M. 

The amount assign to each is depended upon user defined allocation parameters 0 ~ Fi < 

1. The values of these allocation parameters can be assigned in a variety of different 

ways, as long as, LO~~m Fi = 1. Babcock and Olston (2003) addressed this issue when 

evaluating Top-K Monitoring and provided the following heuristics. 

To simplify the process of setting the allocation parameters the authors first 

assigned Fa, which is defined as the coordinator allocation parameter. Once this is done 

the remaining parameters are allocated a portion of the remaining 1 - Fa. The fashion in 

which the remaining portion was allocated is based upon one of two proposed methods: 

1. Even Allocation: The remaining 1 - Fa is even distributed to each monitoring 

node in 11. 
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2. Proportional Allocation: Each node is allocated a portion of 1 - Fo 

proportional to the amount of traffic observed locally. That is, a larger portion 

is allocated to nodes which experience larger volumes of traffic. 

4.3 Performance Criteria 

To evaluate our frequent item monitoring approach a senes of performance 

criteria was determined. We believe each of the criteria defined reflect our goals in this 

thesis. The three criteria used include: communication cost, approximation accuracy, and 

memory requirements. A detail description of each of these criteria and how they were 

measured is given in the following subsections. 

4.3.1 Communication Cost 

We defined communication cost as the ratio of the number of bits communicated 

between any two nodes over the number of bits transmitted using a centralized 

monitoring approach. In a centralized approach we assume only the item identifier for an 

update tuple is communicated when no sliding window is involved. The item identifiers 

in our data sets can each be represented as a 32-bit integer. If a time-based sliding 

window is utilized, we must also include a 32-bit timestamp. 

Communication is only conducted with our approach during resolution. Thus the 

total number of bits transmitted can be calculated as the total number of bits sent during 

each individual resolution phase. The number of bits transmitted during any single 

resolution phase (BPR) is given in Equation 1. 
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EPR =I 3 1·117 1-(32 + 32 + 64)+ 131·117 1·(32 + 64)+ 117 1·64 (1) 

In Equation 1, 131 is defined as the total number of broken constraints which resulted in 

the resolution. We assume that the local thresholds and the adjustment factors account for 

64-bits each. 

4.3.2 Approximation Accuracy 

In Section 3.3 we introduced methods to reduce memory requirements by 

weakening the problem definition. More precisely, we allowed a bounded amount of 

error on each frequency count and provided the set of approximate frequent items. 

Although the amount of error is guaranteed to be no more than a user defined error 

tolerance, the accuracy of the approximate frequent item set has no guarantees. 

To measure the actual quality of the approximations, we adopted two commonly 

used criteria. These include precision and recall. Precision is defined as the percentage of 

correct items contained in the entire output. Similarly, recall is defined as the percentage 

of correct items contained in the output to the number of total possible correct items 

(Cormode and Muthukrishnan, 2003). 

It is sometimes helpful to combine these two measurements into a single value. 

C.J. van Rijsbergen (1979) gives us a measurement called an F-measure, which weighs 

precision and recall equally. This equation gives the overall quality of the output and can 

be expressed as follows: 
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2·P·R 
F-Measure= (P+R) 

4.3.3 Memory Requirements 

(2) 

In our monitoring approach a number of frequency counts are collected for each 

observed item. The bulk of memory required by our approach is dominated by the 

number of these counters. Although we bounded worst case memory requirements in 

Section 3.3.4, we believe that the actual number of counters used may be significantly 

less. Therefore, we measured memory requirements as the maximum number of counters 

stored on any monitoring node at any given time. 

4.4 Experimental Results 

For each of the performance criteria defined in the previous section, we ran a 

series of experimental simulation runs. Varies input parameters were used in each 

experiment to see their affects on these criteria (communication cost, approximation 

accuracy, and memory requirement). The set-up and individual descriptions of each 

experiment is given in the following subsections. Additionally, some heuristics are 

introduced to give a better understanding on how the input parameters should be 

assigned. 

4.4.1 Communication Cost 

Our first set of experiments examined the communication cost incurred using the 

two data set described in Section 4.1. In each simulation run we varied the support 
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parameter s, held the error tolerance fixed at e = 0, and varied the coordinator allocation 

parameter Fa. For all simulation runs we used even allocation to assign the remaining 

allocation parameters. The reason for this is that preliminary results showed no 

significant differences in the communication cost using either discussed approaches. 

These results were in agreement with the analysis conducted by Babcock and Olston 

(2003) in their experimentations with Top-K Monitoring. Finally, we initiated our 

monitoring approach on the first update tuple. Therefore, no special initialization phase 

was used. In Figure 4.1 and Figure 4.2 we see the results of these initial experiments. 

The results show that the effects of the coordinator allocation parameter Fa on 

communication cost differs between the two data sets. In the Lawrence Berkeley TCP 

data set we see that when the allocation parameter is increased, communication cost also 

increases. The opposite pattern occurs with the 1998 World Cup data set. 

As was seen in the analysis of Top-K Monitoring by Olston and Babcock (2003), 

when Fa > 0 reallocation' can prevent reaching the expensive (re)synchronization phase. 

However, this comes at the cost of having more fragile constraints which may break more 

frequently. This same scenario also occurs with our monitoring approach and can explain 

the differences we see. 

Since only four monitors were used with the Lawrence Berkeley TCP data set, the 

(re)synchronization phase required little communication and the weaker constraints could 

not offset this cost. In contrast, the 1998 World Cup data set consisted of 26 monitoring 

nodes. Thus the (re)synchronization phase was much more expensive, requiring many 

nodes to be contacted. From these results we recommend that Fa be assigned a small 

value « 0.3) when there are few nodes and a large value when there are many. 
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FIGURE 4.1 - Communication cost for Berkeley TCP data set. 
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FIGURE 4.2 - Communication cost for '98 World Cup data set. 
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Both results show that by reducing the support parameter communication cost 

increases. This is not surprising since in theory, as the support is decreased the expected 

size of the frequent item set increases. An anomaly did occur, however, in the 1998 

World Cup data set when s = 0.008. In this scenario it is assumed that the frequent item 

set becomes more volatile. This demonstrates the need for the data to maintain a degree 

of stability in order for our purposed method to significantly reduce communication cost. 

Our second experiment focused on how communication cost accumulated over 

time to reach its final value. The 1998 World Cup data set was used for this experiment 

but execution was terminated after 500,000 update tuples. The coordinator reallocation 

parameter was set fixed at Fo = 0, while we varied the support parameter. To determine 

how communication accumulates we held constant the number of update tuples to the 

total number in the data set (approximately 20 million) in our communication cost 

formula. The results of this experiment are shown in Figure 4.3. 

We see from our results a sudden spike in communication cost occurring during 

the initial 100,000 update tuples. Afterwards, communication only steadily rises until 

reaching its final value. This sudden spike is most extreme when s = 0.008. In this case 

over 12 million bytes were transmitted in the first 100,000 update tuples alone. As a 

result, we believe if an initialization phase was used to account for these first 100,000 

tuples, overall communication cost can be reduced significantly. 
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FIGURE 4.3 - Communication cost over time for '98 World Cup data set. 

Finally, our third experiment focused on communication cost required when the 

error tolerance c = O.l·s. We saw, in this scenario, that communication cost was between 

-1.5% and 0.5% from the results given when the error tolerance c = O. That is, in some 

cases communication was insignificantly raised and others were insignificantly lowered. 

This signifies that our adjustment factor maintenance policies are both lightweight and 

communication efficient. 

4.4.2 Approximation Accuracy 

Accuracy of our monitoring method is directly depended upon the accuracy of the 

summary data structured integrated into our monitoring nodes. As a result, to study the 

approximation accuracy is to study the actual summary data structure utilized. Recall that 

we adopted the MG algorithm and modified the threshold in hopes of increasing the 

49 



accuracy of the counting technique. Therefore, our experiments focus on examining the 

accuracy of both the original MG algorithm and our modified version. 

To examine the accuracy of both versions of the MG algorithm, we conducted a 

series of runs using the Berkeley TCP data set. These runs were done on a centralized 

node environment; however, similar results are expected when placed in a distributed 

setting. During each run we measured the average precision of both the unmodified MG 

algorithm and our modified threshold version. The results of these runs are given in 

Figure 4.4 below. 

III Original Algorithm iii Modified Version 

0.8 

c 
0.6 0 

'iii 
'0 
~ 0.4 
0.. 

0.2 

0 

0.005 0.01 0.02 0.03 
Support 

FIGURE 4.4 - MG algorithm average precision. 

We see from the results that significant improvement was made on the precision 

of the MG algorithm. This is most extreme when s = 0.01, which showed a 99% increase 

in precision. The least improvement was found to be when s = 0.02, which still showed 

an increase in over 50%. 

50 



These results are not surprising, however, when examining the threshold used by 

the traditional MG algorithm. Recall in the traditional MG algorithm, we subtracted eN 

from the threshold to account for the maximum possible amount of error introduced to 

each frequency count. To demonstrate this over-estimation in the error introduced we ran 

a series of runs with varying supports and reported the true number of decrements, or the 

true error introduced on the frequency counts, at the end of each run. The results in Table 

II clearly show this over-estimation. Thus counting the true number of decrements (or 

true error introduced) can greatly improve the accuracy of the MG algorithm. 

TABLE II 

DECREMENTS OBSERVED IN THE MG ALGORITHM 

Support Max Decrements True Decrements 

0.005 8949 0 

0.01 17899 31 

0.02 35799 313 

0.03 53699 951 

4.4.3 Memory Requirements 

To provide the exact frequent item set, a counter for each observed item must be 

kept in memory. The amount of memory in this case is bounded by lUI which may be 

very large. In the Lawrence Berkeley TCP data set there was 1,622 unique user IDs. The 

much larger 1998 World Cup data set contained 9,198 unique item IDs. Thus we expect 

each monitor to require equal amount of counters. 
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When tracking the approximate frequent item set, we saw in Section 3.3.4 that 

each monitoring node required between O( 1) and O( IG- ) counters. To test the actual 

number of counters used we setup a series of runs with varying supports using both the 

Berkeley TCP data set and the 1998 World Cup data set. The results of these runs are 

given in Table III. 

TABLE III 

MEMORY REQUIREMENTS FOR APPROXIMATE TRACKING 

Support Max Counts Max Counts Max Counts 

(mle:) (lIe:) (Actual) 

World Cup Data Set 0.01 26,000 1,000 1,281 

0.008 32,500 1,250 1,521 

0.006 43,334 1,667 1,895 

Berkeley Data Set 0.02 2,000 500 502 

0.01 4,000 1,000 1,001 

0.005 8,000 2,000 1,489 

Given in Table III are the maximum counts used by any monitor, as well as, the 

worst cases bound for our method O( IG-). Also included is the worst case memory 

requirements for any centralized monitoring approached O( 1) for comparison. Ideally, 

our method would use approximately the same amount of memory as any centralized 

approached in practice. Our results verify that this is true, since the number of counters 
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used is much closer to 1 than it is to p.. In one case the number of counters used was 

found to be less than the worst case bound for any centralized approach. 

4.5 Comparison 

To finalize our evaluation, we compared our frequent item monitoring approach 

with Top-K Monitoring. We measured the communication cost and the output quality of 

both methods using exact counting. Since our monitoring method is designed explicitly to 

solve the frequent items problem and we are doing exact counting, the accuracy is 

perfect. That is, there are no false positives and no false negatives, yielding an F-measure 

of 100%. 

Top-K Monitoring was not originally designed to monitor frequent items, but 

rather to provide the top-k ranked items. Recall in Section 1.2.4, that if k = t we are 

guaranteed to report all frequent items. Thus, we can use any top-k monitoring method to 

also monitor frequent items. Since we use very small support values, however, assigning 

k in this fashion would yield a very large list outputted. This list is also likely to contain a 

large number of false positives (or a low precision value). Therefore, before comparison 

we first investigated various setting of k with the goal of improving overall output 

quality. 

Our experiments used Lawrence Berkeley TCP data set. We measure both recall 

and precision every 100,000 update tuples and formed an average of these measurements. 

These two averages were then combined to form an F-measure. We plotted these 
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measures on a curve given in Figure 4.5. We see from these results that the overall 

quality of the output can be greatly improved using a k < j.. 
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FIGURE 4.5 - Output quality of Top-K Monitoring on Berkeley TCP data set. 

Using our results above as a guide for selecting an appropriate value for k, we 

then began comparing Top-K Monitoring with our modified version. In these 

experiments we again used the Lawrence Berkeley TCP data set. We varied the 

coordinator allocation parameter and the support value in each simulation run and 

measured the final communication cost. The allocation parameter which yielded the 

optimal communication cost was selected in both methods. Additionally, we selected the 

k value which yielded the optimal F-measure for each support. The results of our 

comparisons are given in Table IV. 

We see from the results that in all scenarios communication cost was lower using 

our modified explicit version. The difference between the two methods was greatest 
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when the support is low. This is not surprising since when the support is low, the required 

k needed to report all frequent items must be high. Since the entire top-k set is transmitted 

when any constraint is broken, a large k will also yield very long messages. This is likely 

the reason for the large gap in communication cost. Additionally, we see from the results 

that the k value chosen approximates the average size of F outputted for each support. 

Thus the differences in communication cost are caused more by the differences in the 

actual algorithms rather than by the output sizes. 

TABLE IV 

COMPARISON RESULTS WITH TOP-K MONITORING 

Method Support Avg. Output Communication F-Measure 
Size 

Top-K Monitoring 0.005 50.00 143.34% 95.37% 

0.01 20.00 46.66% 96.07% 

0.02 10.00 12.20% 83.62% 

Modified Version 0.005 52.25 7.43% 100.0% 

0.01 21.45 7.03% 100.0% 

0.02 7.48 2.70% 100.0% 

For our final comparison we observed the scalability of each method. To do this 

we varied the number of monitoring nodes using the Lawrence Berkeley TCP data set. In 

each simulation we held the support fixed at 0.01 and used k = 20. The results of this 

experiment shows that communication cost for both methods grow approximately linear 

to the number of monitoring nodes. However, with our modifications the rate of growth is 

much less. 
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CHAPTERS 

APPLICATION: DETECTING DDoS ATTACKS 

5.1 Introduction 

Denial of service (DoS) attacks is a malicious attempt by a single person or a 

group of people to prevent legitimate users from accessing a provided service (cert.org, 

1997) Although DoS attack patterns are highly diversified, coming in many different 

forms, the most generally observed pattern involves the transmission of numerous 

packets toward a single destination (Houle and Weaver, 2001). The goal is to overload 

the available bandwidth, or other resources of the intended victim, with a surge of 

network traffic. These types of attacks are commonly called bandwidth attacks and 

consists of TCP flooding, ping flooding, and UDP flooding. 

Previously the most common DoS attacks were conducted by a single source 

directed at a single victim (Houle and Weaver, 2001). Since the year 1999, however, 

many more sophisticated attacking tools have been created which utilize multiple 

attacking sources. These newly introduced attacking patterns have created an additional 

class of its own, called distributed denial of service attacks (DDoS). The goal of these 

attacks is the same as its predecessors, but overwhelms the resources of the intended 

victim by brute force numbers. 
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Generally a DDoS attack consists of two stages, each depicted by Figure 5.1. The 

first stage consisted of the identification and infiltration of numerous host computers. 

These subverted machines are usually called "zombies", although also referred to as 

agents. Once a desired number of agents have been gathered, the final step is for the 

actual attack to begin. The attack traffic is generated by each agent, and is propagated 

toward the victim. To hide the identity of each agent, in hopes of preventing easy 

detection, some of the agents may use spoofed addresses. Luckily for many defense 

systems, the scenario of spoof addressing is found to be rare in actual practice (Mao and 

others, 2006). 

• ••• 

Victim 

FIGURE 5.1 - DDoS attacking pattern. 

The tools used to launch DDoS attacks are relatively simple to use and readily 

available (Zhang and Parashar, 2005). This has resulted in a surge of attacks recently, 

some even amongst top web companies. For example in the year 2000, websites such as 
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Yahoo, Amazon.com, eBay, and others all experienced regional outages caused by DDoS 

attacks (cnn.com, 2000). In 2003 eBay received tens of thousands of dollars in damages 

from a 20,000 agent coordinated attack on their website (spamdailynews.com, 2005). 

5.2 Detecting DDoS Attacks 

Motivated by the impact of DDoS attacks on the Internet community, we will 

examine how our frequent item monitoring method can be used as a detection system. As 

stated, DDoS attacks are generally characterized by a surge of network traffic toward an 

intended victim host. Past detection solutions have used this simple, but obvious 

characteristic, as a detection criterion (Akella and others, 2003; Manjhi and others, 2005; 

Sekar and others, 2006). Generally, these systems track destination addresses which have 

received a disproportional amount of traffic in the observed network. 

Similar to past solutions, we will continuously monitor destination addresses 

receiving a large number of packets over a given time. That is, we will report frequently 

used destination addresses. Since DDoS attacks have only a limited duration, we must 

maintain time-sensitive frequency counts. To do this we buffered all update tuples 

occurring over the last five minutes, which is the commonly observed attack duration in 

the Internet (Moore, Voeker, and Savage, 2001.). 

Since any detection system has an inherited degree of inaccuracy, we used exact 

counting. By examining the detection capabilities in this fashion, we will know 

immediately if our approach is applicable as a detection tool. If the detection capabilities 

are then found to be satisfactory and memory requirements become a concern, the 
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methods provided in Section 3.4 can be utilized. However, approximation frequent counts 

may degrade the detection accuracy of our method. 

5.3 Data Sets 

To evaluate the applicability of our monitoring method as a possible DDoS 

detection tool, we adopted the publicly accessible UCLA CSD network traces 

(lever.cs.ucla.edu). Available network traces include normal TCP and UDP traffic traces 

collected at a border router. Additionally, a collection of attack traces were generated 

from a testing machine using the tfn attack tool. Information gathered on each packet 

include: timestamp, source address, destination address, source port, destination port, and 

length packet in bytes. All addresses were renumbered using a collection of scripts to 

preserve the privacy of the network users. 

To create a more complete data set, we a combined a series of normal traffic 

traces with four different types of DDoS attack traces. The four different attack patterns 

include (Mirkovic, Prier, and Reiher, 2002): 

1. Constant Rate Attack: Represents the majority of attack patterns, which 

deploys a continuous maximum rate of packets. 

2. Pulsing Attack: Every 100 seconds the attack rate will oscillate from the 

maximum rate to zero. 

3. Increasing Rate Attack: The attack rate increases over a 300 second time-span 

until the maximum rate is achieved. 
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4. Gradual Pulse Attack: The attack rate increases over a 300 second time-span. 

When the maximum rate is achieved, it is maintained for 20 seconds then 

gradually decreased to zero over 10 seconds. The pattern then repeats after a 

40 second inactive period. 

Each attack pattern used had a maximum rate of 500KBps. The attack patterns are 

represented in Figure 5.2 and Figure 5.3. Similar to the Lawrence Berkeley data set we 

simulated a distributed environment by evenly assigning packets to four monitoring 

nodes. 

5.4 Performance Criteria 

We measured the performance of our system usmg four common intrusion 

detection system (IDS) evaluation criteria. Statistics reflecting these criteria were 

measured during each of our simulation runs. The criteria we used and their definitions 

are given as follows: 

1. Detection Delay: The amount of time between when the attack begins and 

when the address of the victim becomes frequent. When the address of the 

victim becomes frequent we say this signifies an attack. This delay does not 

include communication delay or processing delay. 

2. Detection Rate: The percentage of the number of attacks detected to the total 

number of attacks in the data set. 

3. False Positive Rate: The percentage of the number of packets received at a 

destination wrongly classified as a victim of an attack to the total number of 

packets in the data set. 
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4. Communication Cost: The number of bytes communicated by all the 

monitoring nodes over the number of bytes needed to forward all item 

occurrences and their timestamps to a centralized location for processing 

5.5 Experimental Results 

In each simulation run we varied the support parameter s, held the error tolerance 

fixed at c = 0, and varied the coordinator allocation parameter Fa. The coordinator 

allocation parameter which yielded optimal communication cost was reported in all our 

results. Statistics needed for each criterion given, was gathered during each run. The 

results of our experiments are summarized in Table V below. 

TABLE V 

DDOS DETECTION EVALUATION RESULTS 

Support Detection False Positive Average Delay Communication 
Rate Rate (seconds) Cost 

0.2 100.0% 12.99% 26.51 7.11% 

0.3 100.0% 5.10% 35.98 0.99% 

0.4 100.0% 2.84% 46.42 0.41% 

0.5 100.0% 2.24% 58.84 0.24% 

We see that with an appropriately set support value all attacks can be detected in 

less than a minute. Additional false positives may also occur, however, these alarms may 

still be of interest since they represent destinations receiving significant amount of traffic 

over a short period of time. Finally, we see communication cost is significantly lower 

than forwarding all traffic events to a centralized location for analysis. 
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This preliminary evaluation shows promising results when compared with three 

other known DDoS detection methods (Chen and Hwang, 2006; Peng, Leckie, and 

Ramamohanarao, 2004; Zhang and Parashar, 2005). Table VI gives a comparison table of 

all methods examined. We see from the table that each detection method yielded a high 

detection rate of 75-100%. However, similar to our results, methods (Chen and Hwang, 

2006) and (Zhang and Parashar, 2005) also yielded some false alarms. Our false positive 

rate is most comparable with (Zhang and Parashar, 2005) which showed a rate between 

7.67% and 12.12%. The work in (Chen and Hwang, 2006) examined different threshold 

values and traded off detection accuracy to reduce false positives to less than 1 %. Only 

(Peng, Leckie, and Ramamohanarao, 2004) measured the detection delay of their method, 

which required between 69.7 and 10 seconds depending on the aggressiveness of the 

attack. Although our detection delays are comparable, we do not include processing and 

communication delay. 

TABLE VI 

COMPARISON OF MUTLIPLE DDoS DETECTION SYSTEMS 

Method Detection False Positive Average Delay 
Rate Rate (sec) 

(Chen et ai., 2006) 75-100% 0-70% No data 

(Peng et ai., 2004) 90-100% No data 10-69.7 

(Zhang et ai., 2005) No data 7.67-12.12% No data 

Proposed System 100% 2.24-12.99% 26.51-58.84 
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6.1 Conclusions 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this thesis we examined the problem of monitoring frequent items over 

distributed data streams. The original goal was to create a system that used limited 

memory, computation time, and communication. We examined a variety of prior 

solutions in the problem domain and in closely related domains. One solution which 

gained particular attention was the communication efficient Top-K Monitoring method 

proposed by Babcock and Olston (2003). It was determined that their method could be 

modified to explicitly monitor frequent items. 

Although the original Top-K Monitoring approach allowed for approximate 

answers, they did not utilize summary data structures. As a result, memory requirements 

were still dominated by the number of unique items observed. To fuse two prior 

methodologies together, we integrated a modified version of the MG algorithm into our 

monitoring approach. This allowed us to reach our initial goal of requiring limited 

memory space. 

To evaluate all of our modifications, we used two widely used and publicly 

available data sets. The results of our experiments demonstrated that our approach used 

less communication and scaled better then the original Top-K Monitoring method. 
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Additionally, approximate answers were provided with near exact results. This was 

accomplished while still requiring a limited amount of memory space. 

Finally, we examined the important problem of detecting DDoS attacks in a 

networked environment. Since DDoS are characterized by a flood of network traffic, this 

problem fits appropriate with our monitoring task. After evaluation, our findings 

demonstrated that our method can indeed be used as a detection tool. When compared 

with other known detection systems, we saw that our approach yielded favorable results. 

6.2 Future Work 

Our evaluation results showed two important issues with our monitoring method. 

First although our approach yielded better scalability than Top-K Monitoring, it still 

scaled linearly to the number of monitoring nodes. More analysis is needed in this 

direction to determine the performance under a large number of monitoring nodes (> 100). 

Second, we saw that a significant amount of communication cost can be avoided if an 

initialization phase is utilized. Further analysis is needed to study different initialization 

methods and heuristics on how long they should operate before our monitoring method 

can begin. 

In the selected application domain we saw that our method yielded favorable 

results. Our preliminary analysis, however, should still be expanded in more detail. This 

would include implementing our monitoring approach on a specialized networking 

simulator. More detailed analysis can be conducted in this fashion. This is important 

since our analysis ignored the contributions of propagation and transmission times in the 

detection delay. Additionally, deployment issues were not addressed in our work. This 
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could include the cost of implementing in a real world ISP network and how likely it 

would gain acceptance in the IDS community. 

Finally, in many application domains there is a need for time sensitive data. That 

is, to weigh more recent occurrences more than older ones. Although this topic was 

covered in this thesis, we did not provide a comprehensive evaluation. More analysis in 

this direction is therefore needed. 
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APPENDIX I 

MONITORING NODE UPDATE PROCESS 

The flow chart listed below demonstrates the basic step-by-step process used at 

each monitoring node upon receiving a single update tuple. This process assumes that no 

recency is involved in the monitoring process. 

Update tuple 'OJ. tp 
received 

Ti =Ti+S 

Is counter Cj.i 
stored in memory? 

Yes 

Manage new 
counter 

Are all constraints 
f------I~ valid? 

Yes 

End 
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APPENDIX II 

COORDINATOR FORWARDING PROCESS 

The flow chart below demonstrates the step-by-step process used at the 

coordinator node upon receiving a forwarded adjustment factor (see Section 3.3.3). 

Receive ()j,D from ND 

No node ~ 
with ()jj <O? 

No 

r--~ Select a node I\Ip 
with ilj,p> 0 

Is 
()j,P + value < O? 

Yes 

Send ()J'p= 0 
to monitoring 

node Np 

'-----1 value = ilj,P + value 

Ye 

In all cases 
()j,D<O. 

value = value + ()j,O 

Send 
()j,p= ()j,p + value 
to monitoring 

node Np 

End 
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APPENDIX III 

DATA SET DETAILS & EXAMPLES 

In Section 4.1 we described the two data sets used in our evaluation experiments. 

The first data set described was the Lawrence Berkeley TCP data set. Example data was 

given in Table 1. The second data set used was the 1998 World Cup data set. Below we 

show example data from this data set. We only show certain fields due to page size 

constraints. 

Client ID Date Status Size Server Object ID 

1051164 09/Jun/1998: 16:30:21 200 1699 13 138 

1227767 09/JunlI998: 16:30:21 200 4754 16 10371 

16217 09/JunlI998: 16:30:21 200 348 16 25195 

350507 09/JunlI998: 16:30:21 200 870 16 59 

988304 09/JunlI998: 16:30:21 200 106 16 24668 

915299 09/JunlI998: 16:30:21 200 19686 16 1687 

674830 09/JunI1998: 16:30:21 200 665 16 218 

1227743 09/JunlI998: 16:30:21 200 665 16 218 

12905 09/JunlI998: 16:30:21 200 14432 16 8 

978141 09/JunI1998: 16:30:21 200 472 16 24677 

932973 09/Jun/1998: 16:30:21 200 1077 20 6149 

890039 09/JunlI998: 16:30:21 200 4032 20 13779 

1255525 09/Junl1998: 16:30:21 200 498 20 86 

608386 09/JunlI998: 16:30:21 200 5024 20 13798 

1255497 09/JunlI998: 16:30:21 200 1105 21 174 
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Finally, in Section 5.3, we described the data set used to evaluate our monitoring 

approach as a possible DDoS detection tool. The data set we used was a combination of 

normal UDP traffic traces with four different types of DDoS attack traces. All traces used 

are publicly available at http://lever.cs.ucla.edu. 

The normal traffic traces used in our combined data set are listed below with their 

relative URL. The final timestamp recorded in file8 was listed at 21153 seconds. Thus the 

combined data sets represent less than six hours of UDP normal traffic. 

filel /ddos/traces/public/trace8/udp/file 1 

file2 /ddos/traces/public/trace8/udp/file2 

file3 /ddos/traces/public/trace8/udp/file3 

file4 /ddos/traces/public/trace8/udp/file4 

file5 /ddos/traces/public/trace8/udp/file5 

file6 /ddos/traces/public/trace8/udp/file6 

file7 / ddos/traces/pub 1 ic/trace8/udp/file 7 

file8 /ddos/traces/public/trace8/udp/file8 

The constant rate attack was inserted within file2 normal traffic trace, at approximately 

2000 seconds. Since the attack trace started at zero seconds, we renumbered all 

timestamps relative to the new start time. The constant rate attack traces used are listed 

below with their relative URL. 

file 1 /ddos/traces/public/usc/trace3/exp 1/udp/file 1 

file2 /ddos/traces/public/usc/trace3/exp l/udp/file2 
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The increasing rate attack was inserted within file4 normal traffic trace, at approximately 

7000 seconds. Again, since the attack trace started at zero seconds, we renumbered all 

timestamps relative to the new start time. The increasing rate attack traces used are listed 

below with their relative URL. 

file 1 /ddos/traces/public/usc/trace3/exp3/udp/file1 

file2 /ddos/traces/public/usc/trace3/exp3/udp/file2 

The pulsing rate attack was inserted within file6 normal traffic trace, at approximately 

12000 seconds. The pUlsing rate attack trace used is listed below with its relative URL. 

file 1 /ddos/traces/public/usc/trace3/exp2/udp/file 1 

Finally, the gradual pulse rate attack was inserted within file8 normal traffic trace, at 

approximately 17000 seconds. The gradual pulse rate attack trace used is listed below 

with its relative URL. 

file 1 /ddos/traces/public/usc/trace3/exp4/udp/file 1 
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APPENDIX IV 

REALLOCATION CORRECTNESS PROOFS 

In this section the reallocation method introduced in Section 3.2.2 is proven to 

assign adjustment factors meeting each of the three requirements given. Recall that the 

first adjustment factor requirement calls for the LOS;iS;m Jj,i = O. The following theorem 

shows that the reallocation method used meets this requirement. 

THEOREM 5. Given the reallocation method introduced in Section 3.2.2, when 

the method terminates LOs;is;m Jj,i = O. 

PROOF. Theorem 5 can be proven in a very similar fashion as the correctness 

proof provided by Babcock and Olston (2003). First consider that before adjustment 

factors are assigned, it is assumed each Jj,i = O. The theorem clearly holds in this initial 

case. Next consider when a set of participating nodes 11 are assigned new adjustment 

factors Jj,i' The sum of adjustment factors in this case is not altered: 

LiEll Jj,i = LiEll(Ti - Cj,i + Fd1) 

= LiEll Ti - LiETJ Cj,i + I:!..j 

= LiEll Ti - LiETJ Cj,i + (LiEll Cj,i - LiEll Ti + LiETJ Jj,i) 
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Since the sum is never altered from the initial base case, the reallocation method 

introduced in Section 3.2.2 meets the first adjustment factor requirement and terminates 

with LO~i~m ~j.i = O. D 

The final two adjustment factor requirements are very similar in nature and are 

thus proven in the same fashion. Therefore, only a formal proof for adjustment factor 

requirement 2 is given. This requirement calls for ~j.o 2:: 0 for each item OF E F. The 

following theorem shows that the reallocation method used meets this requirement. 

THEOREM 6. Given the reallocation method introduced in Section 3.2.2, when 

the method terminates for each item OF E F its corresponding adjustment factor ~F.O 2:: O. 

PROOF. Let 11 be a set of participating nodes involved in the reallocation process. 

Since the item OF E F, LiETl CF.i + LiET} ~F.i 2:: LiETl h This is true for the following two 

reasons: 

1. If 11 = {No, NI , ... , Nm}, then the above statement is true by the membership 

definition given in Section 1.2. 

2. If 11 = {N I, No} then the reallocation process was initiated following Phase 2 of 

resolution. For this to occur the above statement must be true otherwise 

validation testing (Section 3.2.1) would have failed and reallocation would not 

have been initiated. 

Given the above property, I1F = LiETl CF.i + LiETl ~F.i - LiETl Ti 2:: O. Allocating a portion of 

this value results in ~F.O 2:: Fo·I1 F 2:: 0 since Fo 2:: O. Thus the reallocation method introduced 

in Section 3.2.2 meets the second adjustment factor requirement and terminates with ~F.O 

2:: O. D 
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