5,992 research outputs found

    Materials for Wind Turbine Blades: An Overview

    Get PDF
    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed

    A Scalable Predictive Maintenance Model for Detecting Wind Turbine Component Failures Based on SCADA Data

    Full text link
    In this work, a novel predictive maintenance system is presented and applied to the main components of wind turbines. The proposed model is based on machine learning and statistical process control tools applied to SCADA (Supervisory Control And Data Acquisition) data of critical components. The test campaign was divided into two stages: a first two years long offline test, and a second one year long real-time test. The offline test used historical faults from six wind farms located in Italy and Romania, corresponding to a total of 150 wind turbines and an overall installed nominal power of 283 MW. The results demonstrate outstanding capabilities of anomaly prediction up to 2 months before device unscheduled downtime. Furthermore, the real-time 12-months test confirms the ability of the proposed system to detect several anomalies, therefore allowing the operators to identify the root causes, and to schedule maintenance actions before reaching a catastrophic stage.Comment: Paper presented at the conference IEEE PES General Meeting 2019, August 4-8 (Atlanta, USA

    A rural agricultural-sustainable energy community model and its application to Felton Valley, Australia

    Get PDF
    Energy and food security require a delicate balance which should not threaten or undermine community prosperity. Where it is proposed to derive energy from conventional fossil fuel resources (such as coal, shale oil, natural gas, coal seam gas) located in established rural areas, and particularly where these areas are used for productive agricultural purposes, there are often both intense community concern as well as broader questions regarding the relative social, economic and environmental costs and benefits of different land uses and, increasingly, different energy sources. The advent of mainstream renewable energy technologies means that alternative energy options may provide a viable alternative, allowing energy demand to be met without compromising existing land uses. We demonstrate how such a Sustainable Energy Rural Model can be designed to achieve a balance between the competing social goals of energy supply, agricultural production, environmental integrity and social well-being, and apply it to the Felton Valley, a highly productive and resilient farming community in eastern Australia. Research into available wind and solar resources found that Felton Valley has a number of attributes that indicate its suitability for the development of an integrated renewable energy precinct which would complement, rather than displace, existing agricultural enterprises. Modelling results suggest a potential combined annual renewable energy output from integrated wind and solar resources of 1,287 GWh/yr from peak installed capacity of 713 MW, sufficient to supply the electrical energy needs of about 160,000 homes, in combination with total biomass food production of 31,000 tonnes per annum or 146 GWh/yr of human food energy. The portfolio of renewable energy options will not only provide energy source diversity but also ensures long-term food security and regional stability. The Felton Valley model provides an example of community-led energy transformation and has potential as a pilot project for the development of smart distributed grids that would negate the need for further expansion of coal mining and coal fired power stations

    Condition monitoring and maintenance for fibre rope moorings in offshore wind

    Get PDF
    The FIRM project aims to develop innovative mooring systems for floating wind farms based on fibre ropes, including new and more efficient methods for installation, condition monitoring, maintenance, and decommissioning. The project shall deliver designs for three different mooring systems. This document describes the contents of work package H7 in the FIRM project,publishedVersio

    Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Get PDF
    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade\u27s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation

    Natural resources conservation management and strategies in agriculture

    Get PDF
    This paper suggests a holistic framework for assessment and improvement of management strategies for conservation of natural resources in agriculture. First, it incorporates an interdisciplinary approach (combining Economics, Organization, Law, Sociology, Ecology, Technology, Behavioral and Political Sciences) and presents a modern framework for assessing environmental management and strategies in agriculture including: specification of specific “managerial needs” and spectrum of feasible governance modes (institutional environment; private, collective, market, and public modes) of natural resources conservation at different level of decision-making (individual, farm, eco-system, local, regional, national, transnational, and global); specification of critical socio-economic, natural, technological, behavioral etc. factors of managerial choice, and feasible spectrum of (private, collective, public, international) managerial strategies; assessment of efficiency of diverse management strategies in terms of their potential to protect diverse eco-rights and investments, assure socially desirable level of environmental protection and improvement, minimize overall (implementing, third-party, transaction etc.) costs, coordinate and stimulate eco-activities, meet preferences and reconcile conflicts of individuals etc. Second, it presents evolution and assesses the efficiency of diverse management forms and strategies for conservation of natural resources in Bulgarian agriculture during post-communist transformation and EU integration (institutional, market, private, and public), and evaluates the impacts of EU CAP on environmental sustainability of farms of different juridical type, size, specialization and location. Finally, it suggests recommendations for improvement of public policies, strategies and modes of intervention, and private and collective strategies and actions for effective environmental protection
    • …
    corecore