16,233 research outputs found

    Efficient Cooperative Anycasting for AMI Mesh Networks

    Full text link
    We have, in recent years, witnessed an increased interest towards enabling a Smart Grid which will be a corner stone to build sustainable energy efficient communities. An integral part of the future Smart Grid will be the communications infrastructure which will make real time control of the grid components possible. Automated Metering Infrastructure (AMI) is thought to be a key enabler for monitoring and controlling the customer loads. %RPL is a connectivity enabling mechanism for low power and lossy networks currently being standardized by the IETF ROLL working group. RPL is deemed to be a suitable candidate for AMI networks where the meters are connected to a concentrator over multi hop low power and lossy links. This paper proposes an efficient cooperative anycasting approach for wireless mesh networks with the aim of achieving reduced traffic and increased utilisation of the network resources. The proposed cooperative anycasting has been realised as an enhancement on top of the Routing Protocol for Low Power and Lossy Networks (RPL), a connectivity enabling mechanism in wireless AMI mesh networks. In this protocol, smart meter nodes utilise an anycasting approach to facilitate efficient transport of metering data to the concentrator node. Moreover, it takes advantage of a distributed approach ensuring scalability

    Cooperative diversity architecture for wireless networks

    Get PDF
    The burgeoning demand for wireless networks necessitates reliable and energy-efficient communication architectures that are robust to the impairments of the wireless medium. Cooperative communication emerges as an appropriate technique that mitigates the severe effects of channel impairments through the use of cooperative diversity. Notwithstanding the fact that cooperative diversity is a very suitable technique to provide robust and reliable communication, the realization of cooperation idea precipitates many technical challenges that are associated with the overhaul of the wireless network design. This dissertation proposes a cooperative diversity architecture for wireless networks, that spans the physical, medium access and routing layers with parameters (jointly) optimized for overall system performance, taking into account the cost of cooperation in each layer. First, we present a new cooperative MAC protocol, COMAC, that enables cooperation of multiple relays in a distributed fashion. Through the proposed protocol, we investigate and demonstrate at what rate and for which scenarios cooperation brings benefits in terms of throughput and energy-efficiency. Our results demonstrate that cooperation initiation has a significant cost on both the throughput and energy-efficiency, which have been often disregarded in the literature. We next study the energy minimal joint cooperator selection and power assignment problem under transmit power constraints such that the cooperative transmissions satisfy an average bit error rate (BER) target. We derive the average BER of the cooperative system and we propose a simple yet close approximation to facilitate cooperator selection methods with closed form power assignment solutions. We formulate the joint cooperator selection and power assignment problem, we present the optimal solution (O-CSPA) and we also propose a distributed implementation (D-CSPA). Our results demonstrate that smart cooperator selection is essential, as it provides efficient resource allocation with reduced overhead leading to improved system performance. Our implementation and simulations of D-CSPA algorithm in COMAC protocol demonstrate that our distributed algorithm causes minimal overhead, yields improved throughput and reduced delay, while reducing the energy consumption. Finally, we propose a cooperative routing framework and a cross-layer architecture, RECOMAC, for wireless ad hoc networks. The RECOMAC architecture facilitates formation of cooperative sets on the fly in a decentralized and distributed fashion, requiring no overhead for relay selection and actuation, and resulting in opportunistically formed cooperative links that provide robust and reliable end-to-end communication, without the need for establishing a prior non-cooperative route, unlike existing schemes. The results demonstrate that under wireless channel impairments, such as fading and path loss, our cooperative forwarding framework and cross-layer architecture, RECOMAC significantly improve the system performance, in terms of throughput and delay, as compared to non-cooperative conventional layered network architecture with AODV routing over IEEE 802.11 MAC

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    • …
    corecore