69 research outputs found

    Quarc: a novel network-on-chip architecture

    Get PDF
    This paper introduces the Quarc NoC, a novel NoC architecture inspired by the Spidergon NoC. The Quarc scheme significantly outperforms the Spidergon NoC through balancing the traffic which is the result of the modifications applied to the topology and the routing elements.The proposed architecture is highly efficient in performing collective communication operations including broadcast and multicast. We present the topology, routing discipline and switch architecture for the Quarc NoC and demonstrate the performance with the results obtained from discrete event simulations

    An analytical performance model for the Spidergon NoC

    Get PDF
    Networks on chip (NoC) emerged as a promising alternative to bus-based interconnect networks to handle the increasing communication requirements of the large systems on chip. Employing an appropriate topology for a NoC is of high importance mainly because it typically trade-offs between cross-cutting concerns such as performance and cost. The spidergon topology is a novel architecture which is proposed recently for NoC domain. The objective of the spidergon NoC has been addressing the need for a fixed and optimized topology to realize cost effective multi-processor SoC (MPSoC) development [7]. In this paper we analyze the traffic behavior in the spidergon scheme and present an analytical evaluation of the average message latency in the architecture. We prove the validity of the analysis by comparing the model against the results produced by a discreteevent simulator

    A performance model of communication in the quarc NoC

    Get PDF
    Networks on-chip (NoC) emerged as a promising communication medium for future MPSoC development. To serve this purpose, the NoCs have to be able to efficiently exchange all types of traffic including the collective communications at a reasonable cost. The Quarc NoC is introduced as a NOC which is highly efficient in performing collective communication operations such as broadcast and multicast. This paper presents an introduction to the Quarc scheme and an analytical model to compute the average message latency in the architecture. To validate the model we compare the model latency prediction against the results obtained from discrete-event simulations

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    A communication model of broadcast in wormhole-routed networks on-chip

    Get PDF
    This paper presents a novel analytical model to compute communication latency of broadcast as the most fundamental collective communication operation. The novelty of the model lies in its ability to predict the broadcast communication latency in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    Quarc: a high-efficiency network on-chip architecture

    Get PDF
    The novel Quarc NoC architecture, inspired by the Spidergon scheme is introduced as a NoC architecture that is highly efficient in performing collective communication operations including broadcast and multicast. The efficiency of the Quarc architecture is achieved through balancing the traffic which is the result of the modifications applied to the topology and the routing elements of the Spidergon NoC. This paper provides an ASIC implementation of both architectures using UMCpsilas 0.13 mum CMOS technology and demonstrates an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    FERONOC : FLEXIBLE AND EXTENSIBLE ROUTER IMPLEMENTATION FOR DIAGONAL MESH TOPOLOGY

    Get PDF
    International audienceNetworks on Chip (NoCs) can improve a set of perfor- mances criteria, in complex SoCs, such as scalability, flexibility and adaptability. However, performances of a NoC are closely related to its topology. The diameter and average distance represent an important factor in term of performances and implementation. The proposed diagonal mesh topology is designed to offer a good tradeoff between hardware cost and theoretical quality of service (QoS). It can contain a large number of nodes without changing the maximum diameter which is equal to 2. In this paper, we present a new router architecture called FeRoNoC (Flexible, extensible Router NoC) and its Register Transfer Level (RTL) hardware implementation for the diagonal mesh topology. The architecture of our NoC is based on a flexible and extensible router which consists of a packet switching technique and deterministic routing algorithm. Effectiveness and performances of the proposed topology have been shown using a virtex5 FPGA implementation. A comparative performances study of the proposed NoC architecture with others topology is performed
    corecore