3,511 research outputs found

    Distributed Adaptive Control for a Class of Heterogeneous Nonlinear Multi-Agent Systems with Nonidentical Dimensions

    Get PDF
    A novel feedback distributed adaptive control strategy based on radial basis neural network (RBFNN) is proposed for the consensus control of a class of leaderless heterogeneous nonlinear multi-agent systems with the same and different dimensions. The distributed control, which consists of a sequence of comparable matrices or vectors, can make that all the states of each agent to attain consensus dynamic behaviors are defined with similar parameters of each agent with nonidentical dimensions. The coupling weight adaptation laws and the feedback management of neural network weights ensure that all signals in the closed-loop system are uniformly ultimately bounded. Finally, two simulation examples are carried out to validate the effectiveness of the suggested control design strategy

    Adaptive Fuzzy Tracking Control with Global Prescribed-Time Prescribed Performance for Uncertain Strict-Feedback Nonlinear Systems

    Full text link
    Adaptive fuzzy control strategies are established to achieve global prescribed performance with prescribed-time convergence for strict-feedback systems with mismatched uncertainties and unknown nonlinearities. Firstly, to quantify the transient and steady performance constraints of the tracking error, a class of prescribed-time prescribed performance functions are designed, and a novel error transformation function is introduced to remove the initial value constraints and solve the singularity problem in existing works. Secondly, based on dynamic surface control methods, controllers with or without approximating structures are established to guarantee that the tracking error achieves prescribed transient performance and converges into a prescribed bounded set within prescribed time. In particular, the settling time and initial value of the prescribed performance function are completely independent of initial conditions of the tracking error and system parameters, which improves existing results. Moreover, with a novel Lyapunov-like energy function, not only the differential explosion problem frequently occurring in backstepping techniques is solved, but the drawback of the semi-global boundedness of tracking error induced by dynamic surface control can be overcome. The validity and effectiveness of the main results are verified by numerical simulations on practical examples

    Robust Adaptive Cooperative Control for Formation-Tracking Problem in a Network of Non-Affine Nonlinear Agents

    Get PDF
    In this chapter, a decentralized cooperative control protocol is proposed with application to any network of agents with non-affine nonlinear multi-input-multi-output (MIMO) dynamics. Here, the main purpose of cooperative control protocol is to track a time-variant reference trajectory while maintaining a desired formation. The reference trajectory is defined to a leader, which has at least one information connection with one of the agents in the network. The design procedure includes a robust adaptive law for estimating the unknown nonlinear terms of each agent’s dynamics in a model-free format, that is, without the use of any regressors. Moreover, an observer is designed to have an approximation on the values of control parameters for the leader at the agents without connection to the leader. The entire design procedure is analysed successfully for the stability using Lyapunov stability theorem. Finally, the simulation results for the application of the proposed method on a network of nonholonomic wheeled mobile robots (WMR) are presented. Desirable leader-following tracking and geometric formation control performance have been successfully demonstrated through simulated group of wheeled mobile robots
    • …
    corecore