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Abstract

In this chapter, a decentralized cooperative control protocol is proposed with application to
any network of agents with non-affine nonlinear multi-input-multi-output (MIMO) dynam-
ics. Here, the main purpose of cooperative control protocol is to track a time-variant
reference trajectory while maintaining a desired formation. The reference trajectory is
defined to a leader, which has at least one information connection with one of the agents
in the network. The design procedure includes a robust adaptive law for estimating the
unknown nonlinear terms of each agent’s dynamics in a model-free format, that is, without
the use of any regressors. Moreover, an observer is designed to have an approximation on
the values of control parameters for the leader at the agents without connection to the
leader. The entire design procedure is analysed successfully for the stability using
Lyapunov stability theorem. Finally, the simulation results for the application of the pro-
posed method on a network of nonholonomic wheeled mobile robots (WMR) are
presented. Desirable leader-following tracking and geometric formation control perfor-
mance have been successfully demonstrated through simulated group of wheeled mobile
robots.

Keywords: cooperative protocol, formation control, decentralized control, robust
adaptive law, distributed observer, mobile robot, non-affine nonlinear system

1. Introduction

Great attention has been paid to the problems of the multi-agent network ranging from consen-

sus, collective behaviours of flocks and swarms, formation control of multi-robot systems, leader-

following, algebraic connectivity of complex network, rendezvous, containment and so on [1–6].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The formation control problem is an interesting issue in biology, automatic control, robotics,

artificial intelligence and so on, which requires each agent to move according to the prescribed

trajectory. Various control strategies have been formulated to achieve the group control objectives.

The systems are usually in nonlinear form due to unpredictable environmental disturbances,

unmodelled dynamics or other uncertainties. A class of nonlinear first-order multi-agent systems

with external disturbances consensus problem was discussed in Ref. [7], whereas other works

that involve second-order and higher order nonlinear multi-agent systems are reported in Refs.

[8] and [9], respectively. Wang et al. [10] reported the design of distributed state/output feedback

cooperative control approaches for uncertain multi-agents in undirected communication graphs.

This is later extended to a condition of directed graphs containing a spanning tree [11]. To

remedy the problem of a non-affine system for a general class, several reported works such as

Ref. [12] employ a direct adaptive approach using an artificial neural network (ANN) to approx-

imate an ideal controller. By employing a system transformation, a non-affine system can be

transformed into an affine system as demonstrated in Ref. [11]. However, the transformation

technique to convert a multi-agent non-affine system to a multi-agent affine system is still new

and open to further studies which are to be discussed in this chapter.

Hou et al. [13] illustrate the method of dealing with non-affine multi-agent system by incorpo-

rating dynamic surface control or DSC but it is limited to a single-input-single-output (SISO)

type of system, that is, with one control input. A similar approach is reported in Ref. [14]

where the distributed dynamic surface design approach is used to design local consensus

controllers using the transformation to convert the system to an affine strict-feedback multi-

agent system. The work is also limited to a single control input per agent.

In this chapter, several novel contributions can be highlighted, that is, the introduction of trans-

formation techniques from a non-affine multi-agent system to an affine multi-agent system for a

network of generic nonlinear multi-input-multi-output (MIMO) systems, that is, a single agent

may have more than one control input and more than one output. The second contribution to be

highlighted in the chapter is the estimation of nonlinear terms in the dynamics without requiring

the linear-in-parameter condition (LIP), that is, the dependence on any model regressor is ele-

vated. The lumped nonlinear function existing in the model agent can be estimated online despite

time-varying characteristics. This implies that the estimation is model free. By virtue of a sigma-

modified adaptive law with projection algorithm that drives the estimation using the cooperative

consensus error, the unknown nonlinear function can be reconstructed. The proposed cooperative

control scheme requires a robust adaptive observer which can reconstruct the control signal from

all agents to be used in the consensus formation control. Owing to the robustification term in the

observer, the control signals can be estimated in finite time. The proposed robust adaptive

formation control is to be exemplified in a form of simulation of multi nonholonomic mobile

robots with differential drive configurations. They are commissioned to follow the leader trajec-

tory while at the same time required to maintain predefined geometric formation guaranteeing

safe inter-agent separation.

The chapter is organized into preliminaries, problem definition, design procedure of the pro-

posed robust adaptive formation control algorithm, simulated results and lastly the conclusion

of the chapter.
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2. Preliminaries

2.1. Mean value theorem

Suppose that the function F is continuous on the closed interval ½a, b� and differentiable on the

open interval ða, bÞ (i.e. F is Lipschitz). Then, there is a point X0 in the open interval ða, bÞ at

which [15]

_F ðX0Þ ¼
FðbÞ � FðaÞ

b � a
ð1Þ

In physical terms, the mean value theorem says that the average velocity of a moving object

during an interval of time is equal to the instantaneous velocity at some moment in the

interval [15].

2.2. Kronecker product

The Kronecker product of matrices A∈R
m�n and B∈R

p�q is defined as [16]

A⊗B ¼
a11B … a1nB
⋮ ⋱ ⋮

am1B … amnB

2

4

3

5 ð2Þ

which satisfies the following properties [16]

ðA⊗BÞðC⊗DÞ ¼ ðACÞ⊗ ðBDÞ

ðA⊗BÞT ¼ A
T
⊗B

T ð3Þ

A⊗ ðBþ CÞ ¼ A⊗BþA⊗C

2.3. Schur complement lemma

For any constant symmetric matrix S ¼

"

S11 S12

ST12 S22

#

, the following statements are equivalent [17]

- S > 0

- S11 > 0 : S22 � ST12S
�1
11 S12 > 0

- S22 > 0 . S11 � S12S
�1
22 S

T
12 > 0

ð4Þ

2.4. Graph theory preliminaries

Consider a network consisting of N agents. Let GðV,E, AÞ be a graph with the set of N nodes

V ¼ fν1, ν2,…, νNg, a set of edges E ¼ {eij}∈R
N�N and associated adjacency matrix A ¼ ðaijÞ∈

R
N�N. An edge eij in G is a link between a pair of nodes (νj, νiÞ, representing the flow of

information from νj (as parent) to νi (as child). The eij is in existence if and only if aij > 0. The

graph is undirected, that is, the eij and eij in G are considered to be the same. We name νi and νj
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as neighbors if eij ∈ E . A path is defined as a sequence of connected edges in a graph. A graph

is connected if there is a path between every pair of the nodes. The degree matrix DL ¼ diag{d1,

d2,… , dN}∈R
N�N , where each di is the input degree to each node, which is equal to the

number of all edges through it (i.e. di ¼
X

j¼1:N
aij). Hence, we can define Laplacian Matrix (L)

as below [16, 18, 19]

L ¼ DL � A ð5Þ

Furthermore, we can define an adjacency matrix for the leader as follows

B ¼ diagfb1, b2,… , bNg∈R
N�N ð6Þ

where each bi indicates the existence of a communication link between the leader and each

agent [16, 18, 19]. Besides, we would have,

H ¼ Lþ B ð7Þ

3. Problem definition

Consider a network of N agents with general non-affine nonlinear dynamics for each of them.

The problem is to design a set of decentralized control protocols for all agents to enhance a

desired formation in the state space and also track a reference trajectory on state variables. Here, a

virtual node is considered as the leader, which knows the desired trajectory and has at least one

communication link with the agents in the network. It means that some agents are unaware

about the leader states and also their control inputs. The whole problem in a general format

can be considered as a platform for any possible state space in diverse applications.

For a MIMO system, one can define the following general nonlinear formulation

_xi1 ¼ h1ðxiÞ þ R1ðxiÞ þ f 1ðxi, uiÞ

_xi2 ¼ h2ðxiÞ þ R2ðxiÞ þ f 2ðxi, uiÞ

⋮

_xin ¼ hnðxiÞ þ RtðxiÞ þ f nðxi, uiÞ

ð8Þ

where n is the number of states for the system, t is the total number of nonlinear terms in the

system (which t ≤ n), xi ∈R
n is the states vector, ui ∈R

m is the input (or control parameters)

vector, m is the number of control parameters, hj for j ¼ ½1, n� is any linear combination on xi,

Rj for j ¼ ½1, n� is any Lipschitz continuous nonlinear function on xi and f j for j ¼ ½1, n� is any

Lipschitz continuous nonlinear function on both xi and ui. The last term defines the non-affine

property of the system which represents the completely coupled inter-relation between states

and control parameters. Each agent dynamic can be represented in matrix form as follows
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_Xi ¼ CXi þ Ri þ Fi

Xi ¼ ½xi1,xi2,… ,xin�
T C : constant matrix

Ri ¼ ½R1ðxiÞ,R2ðxiÞ,… ,RtðxiÞ�
T , t ≤n

Fi ¼ ½F1ðxi ,uiÞ,F2ðxi ,uiÞ,… ,Fnðxi,uiÞ�
T

ð9Þ

where C∈R
n�n is a constant matrix including the multipliers for each state. The elements of C

define the dependence of each state’s derivative to the other states.

For a network ofN of similar agents (or systems), dynamics for each agent i can be represented

by Eq. (9). Also, the dynamic of the leader node can be proposed by this format. The difference

is that the control parameters for the leader are defined with respect to a time-varying refer-

ence trajectory, that is

_x01 ¼ h1ðx0Þ þ h01ðu0Þ

_x02 ¼ h2ðx0Þ þ h02ðu0Þ

⋮

_x0n ¼ hnðx0Þ þ h0nðu0Þ

ð10Þ

where h0 j for j ¼ ½1, n� is any linear combination on the leader control parameters (i.e. reference

trajectory u0). Actually, the reference trajectory is a set of inputs which provide certain dynam-

ics in state space for the leader agent. The leader dynamics can be represented in the matrix

form as the following:

_X0 ¼ CX0 þDu0 ð11Þ

X0 ¼ ½x01,x02 , … ,x0n�
T , u0 ¼ ½u01 ,u02,…,u0m�

T

C & D : constant matrices

where D∈R
n�m is a constant matrix including the multipliers for each control parameters.

Moreover, the desired formation among the agents in a network can be presented by a set of

constant values F ∈ ðRN � RnÞ, which determines the relative distance between agents in the

state space.

The problem is to enhance F among the network agents and track the reference trajectory

defined by (x0, u0) at the leader node with inter-agent communication topology defined by the

communication graph.

4. Design procedure for robust adaptive cooperative control protocol

This section is dedicated to presenting the design process for cooperative control protocol, an

observer to estimate the control parameters of the leader at each agent and a robust adaptive
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law to estimate the nonlinear terms at each agent. The design process is initiated by dealing

with the non-affinity property of the agents.

4.1. Dealing with non-affinity property

Using the mean-value theorem presented in Section 1, for the nonlinear functions fj, which has

a coupled terms of xi and ui, we have [19]

∂f jðxi, uiÞ

∂u
ju¼u� ¼ μ ¼

f jðxi, uiÞ � f jðxi, uiÞ

ui � ui
, ui < u� < u ð12Þ

and without any loss of generality we can consider μ = 1 and ui is any constant value.

f jðxi, uiÞ ¼ ui þ qjðxiÞ

qjðxiÞ ¼ f jðxi, uiÞ � μui
ð13Þ

where qjðxiÞ is an unknown nonlinear function depending only on xi. As can be seen, the non-

affine nonlinear function f jðxi, uiÞ is converted to an affine form. Now, the dynamics of each

agent can be modified as

_xi1 ¼ h1ðxiÞ þ R1ðxiÞ þ h01ðuiÞ þ q1ðxiÞ

_xi2 ¼ h2ðxiÞ þ R2ðxiÞ þ h02ðuiÞ þ q2ðxiÞ

⋮

_xin ¼ hnðxiÞ þ RtðxiÞ þ h0NðuiÞ þ qtðxiÞ

ð14Þ

Considering

gjðxiÞ ¼ RjðxiÞ þ qjðxiÞ , j∈ ½1, t� , t ≤ n ð15Þ

where gjðxiÞ is an unknown nonlinear function depending on xi, the matrix format for each

agent dynamics can be presented as

_Xi ¼ CXi þDui þD1Gi

D & D1 : constant matrices

Gi ¼ ½g1ðxiÞ,g2ðxiÞ,…,gtðxiÞ�
T

ð16Þ

where D∈R
n�m is a constant matrix including the multipliers for each control parameter.

Actually, the elements of D define the dependence of each state’s derivative to each control

parameters. Moreover, D1 ∈R
n�t is a diagonal matrix defining the existence of nonlinear

functions in the equation for derivative of each state. Elements of D1 can only be one or zero.

It should be noted that since t ≤ n, we may have some states’derivatives which do not include

any nonlinear terms.
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In the following subsections, the elements of Gi, which define the unknown nonlinear func-

tions on each state’s derivative, would be estimated (adapted) online using consensus error of

the network.

4.2. Cooperative protocol for formation and tracking problem

For a network of N agents with the dynamics described by Eq. (16), we can have a lumped

formulation for the dynamics of all agents using the Kronecker product,

_X ¼ ðIN ⊗CÞXþ ðIN ⊗DÞU þ ðIN ⊗D1ÞG

X ¼ XNn�1 ¼ ½X1,X2,… , XN�
T , U ¼ UNm�1 ¼ ½u1,u2,… , uN�

T

G ¼ GNt�1 ¼ ½G1,G2 ,… , GN�
T , IN ¼ diag{1, 1,… , 1}∈RN�N

ð17Þ

For this network, we can define the combined formation and tracking errors in a single formula-

tion in relation to the neighbouring information available to each agent i via the communication

graph [16]

ei ¼
X

N

j¼1

aij

�

ðXi � XjÞ � ðΔi � ΔjÞ
�

þ bi

�

ðXi � X0Þ � ðΔi � Δ0Þ
�

ð18Þ

where Δ∈R
n�1 is the vector of desired values for states of agents and also the leader. We can

consider ei as the consensus error for agent i. Hence

ei ¼
X

N

j¼1

aij

�

ðXi � ΔiÞ � ðXj � ΔjÞ
�

þ bi

�

ðXi � ΔiÞ � ðX0 � Δ0Þ
�

ð19Þ

By changing the variables, we have

ei ¼
X

N

j¼1

aijðZi � ZjÞ þ biðZi � Z0Þ

Zi ¼ Xi � Δi

Zj ¼ Xj � Δj

Z0 ¼ X0 � Δ0

ð20Þ

Trying to lump the consensus errors of all agents in an N-array format, we have

E ¼ ðH⊗ InÞZ� ðB⊗Z0Þ1

Z ¼ ZNn�1 ¼ ½Z1,Z2,…, ZN�
T

In ¼ diagf1, 1,…, 1g∈Rn�n , 1 ¼ ½1,1, …,1�T ∈ R
N�1

ð21Þ

Besides, considering Eq. (17), we can have an N-array form for dynamics of agents in the

changed variables space
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_Z ¼ ðIN ⊗CÞZþ ðIN ⊗DÞU þ ðIN ⊗D1ÞG ð22Þ

If the consensus errors of all agents converge to zero, then both formation and tracking objectives

are reached, that is

lim
t!∞

E ¼ 0 ð23Þ

Here, the cooperative protocol U is designed using the Lyapunov stability theorem to ensure

Eq. (23) is reached. Consider the following Lyapunov function

V ¼
1

2
E
T
E ð24Þ

Then,

_V ¼ E
T
�

ðH⊗ InÞ _Z � ðB⊗ _Z0Þ1
�

_V ¼ E
T
�

ðH⊗ InÞðIN ⊗CÞZþ ðH⊗ InÞðIN ⊗DÞU þ ðH⊗ InÞðIN ⊗D1ÞG� ðB⊗ _Z0Þ1
� ð25Þ

Considering Eq. (3), we have

ðH⊗ InÞðIN ⊗DÞ ¼ ðH⊗DÞ

ðH⊗ InÞðIN ⊗D1Þ ¼ ðH⊗D1Þ
ð26Þ

Besides, using Eqs. (3) and (21), we have

ðH⊗ InÞðIN ⊗CÞZ ¼ ðIN ⊗CÞEþ ðB⊗CZ0Þ1 ð27Þ

Then, Eq. (25) leads to,

_V ¼ E
T
�

ðIN ⊗CÞEþ ðB⊗CZ0Þ1 þ ðH⊗DÞU þ ðH⊗D1ÞG� ðB⊗ _Z0Þ1
�

ð28Þ

Forcing _V < 0 and referring to Eq. (11), we have

ðIN ⊗CÞEþ ðB⊗Du0Þ1 þ ðH⊗DÞU þ ðH⊗D1ÞG ¼ � PE

P ¼ PT
> 0 , P∈R

Nn�Nn
ð29Þ

Hence,

ðH⊗DÞU ¼ �
�

Pþ ðIN ⊗CÞ
�

E� ðB⊗Du0Þ1 � ðH⊗D1ÞG ð30Þ

Based on Lyapunov stability theorem, using U∈R
Nm�1 in Eq. (30) as the cooperative control

protocol will ensure that _V < 0 and that E reaches zero asymptotically. Hence, the objectives in

formation problem and tracking problem have been accomplished. Expressing the control signal

at agent level for agent i
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X

N

j¼1

HijDuj ¼ �ðPi þ CÞei � biDu0 �
X

N

j¼1

HijD1Gj ð31Þ

Pi ¼ Pðk�, r�Þ , k�, r� ¼ ½
�

ði� 1Þ � nþ 1
�

: ði� nÞ� , Hij ¼ Hði, jÞ

and then

HiiDui ¼ �ðPi þ CÞei � biDu0 �
X

N

j¼1

HijD1Gj �
X

N

j¼1 6¼i

HijDuj ð32Þ

Finally, the control parameter for agent i can be presented as the following

ui ¼
1

Hii
ðDTDÞ�1DT

�

� ðPi þ CÞei � biDu0 �
X

N

j¼1

HijD1Gj �
X

N

j¼1 6¼i

HijDuj

�

ð33Þ

Here, a pseudo-inverse method is employed on D.

There are two required conditions on achieving this goal, which are explained in the following

assumptions.

Assumption 1. The communication graph should be undirected and connected. It means

sufficient information can be available on agents.

Assumption 2. The dynamics of each agent should be completely controllable, that is Dmatrix

should be full rank. It leads us to a state transformation in some applications.

Looking at the proposed cooperative control protocol in Eq. (33), there are two terms, which

are not totally available to all agents:

i. uj (fourth term in the prentices in Eq. (33)), which is the control parameter for the

neighbouring agent at the current moment.

ii. Gj (third term in the prentices in Eq. (33)), which includes the unknown nonlinear terms

for dynamics of neighbouring agents.

By reaching consensus on the states of agents, we can conclude that the control parameters of

each agent has converged to the values of leader control parameters [20]

lim
t!∞

ðuj � u0Þ ¼ 0 , j∈ ½1, N� ð34Þ

Hence, the control parameters for the neighbouring agent (uj) are approximated by the control

parameter of the leader, which in turn will be observed locally at each agent. It means that each

agent has its own estimation on u0 and sends it to the neighbouring agents as its control

parameter. The observed data will be transmitted to the neighbouring agents via communica-

tion graph to compute the control protocols.
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The unknown nonlinear terms (Gj) also will be estimated using the consensus error of each

agent. Similarly, the adapted data are shared with neighbouring agents through the commu-

nication graph.

4.3. Observer design for leader control parameters

Here, the objective is to have consensus on the value of u0 among the all agents in the network.

For this objective, we can define the following consensus error for each agent

Δci ¼
X

N

j¼1

aijðT̂ i � T̂ jÞ þ biðT̂ i � u0Þ ð35Þ

where T̂ i ∈R
m�1 is the observed vector at agent i for the leader control parameter, and again

the aij and bi are the elements of adjacency matrix for the communication graph in the network.

Eq. (35) can be represented in a lumped format as the following

Δc ¼ ðH⊗ ImÞT̂ � ðB⊗ u0Þ1

Δc ¼ ΔcNm�1 ¼ ½Δc1,Δc2 ,…, ΔcN�
T

T̂ ¼ T̂Nm�1 ¼ ½T̂ 1, T̂ 2,…, T̂N�
T

ð36Þ

If the equation

lim
t!∞

Δc ¼ 0 ð37Þ

is satisfied, we can say that the observation objective is achieved. Considering the following

Lyapunov function, we have

V1 ¼
1

2
Δ
T
c Δc ð38Þ

Then,

_V1 ¼ Δ
T
c

�

ðH⊗ ImÞ
_̂
T � ðB⊗ _u0Þ1

�

ð39Þ

Since the summation of all elements in each row of the Laplacian matrix is zero, we can say

that

ðL⊗ _u0Þ1 ¼ 0 ð40Þ

and recalling Eq. (7), Eq. (39) can be written as following,

_V1 ¼ Δ
T
c ðH⊗ ImÞ

_̂
T � Δ

T
c ðH⊗ _u0Þ1 ð41Þ

Considering
_̂
T ¼ �Δc þ T̂

0

, we have
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_V1 ¼ �Δ
T
c ðH⊗ ImÞΔc þ Δ

T
c ðH⊗ ImÞT̂

0

� Δ
T
c ðH⊗ _u0Þ1 ð42Þ

where since ðH⊗ ImÞ is the positive definite recalling the Schur Complement Lemma, the first

term is surely negative. To achieve _V1 < 0, we should show that

_V 11 ¼ Δ
T
c ðH⊗ ImÞT̂

0

� Δ
T
c ðH⊗ _u0Þ1 ≤ 0: ð43Þ

Recalling Eq. (3), we have

ðH⊗ _u0Þ ¼ ðH⊗ ImÞðIN ⊗ _u0Þ ð44Þ

Hence, the Eq. (43) is,

_V 11 ¼ Δ
T
c ðH⊗ ImÞT̂

0

� Δ
T
c ðH⊗ ImÞðIN ⊗ _u0Þ1 _V11 ≤ Δ

T
c ðH⊗ ImÞT̂

0

þ jjΔT
c ðH⊗ ImÞjj ðIN ⊗ _U0MÞ1

ð45Þ

where _U0M is the upper band or maximum absolute value for _u0. This value should be available

beforehand. Now, we should only show that

Δ
T
c ðH⊗ ImÞT̂

0

þ jjΔT
c ðH⊗ ImÞjj ðIN ⊗ _U0MÞ1 ¼ 0 ð46Þ

Hence,

Δ
T
c ðH⊗ ImÞT̂

0

¼ �jjΔT
c ðH⊗ ImÞjj ðIN ⊗ _U0MÞ1

Δ
T
c ðH⊗ ImÞT̂

0

¼ �Δ
T
c ðH⊗ ImÞ sign

�

Δ
T
c ðH⊗ ImÞ

�

ðIN ⊗ _U0MÞ1

ð47Þ

where sign
�

Δ
T
c ðH⊗ ImÞ

�

∈R
Nm�Nm is a diagonal matrix whose diagonal elements are the signs

of each element in Δ
T
c ðH⊗ ImÞ∈R

1�Nm. Finally, since we have

�

ΔcΔ
T
c ðH⊗ ImÞ

��1

ΔcΔ
T
c ðH⊗ ImÞ ¼ IN ⊗ Im ð48Þ

the second term in
_̂
T ¼ �Δc þ T̂

0

, is

T̂
0

¼ � sign
�

Δ
T
c ðH⊗ ImÞ

�

ðIN ⊗ _U0MÞ1 ð49Þ

and recalling Eq. (36), the rate for the observed parameter is

_̂
T ¼ �ðH⊗ ImÞT̂ þ ðB⊗ u0Þ1 � sign

�

Δ
T
c ðH⊗ ImÞ

�

ðIN ⊗ _U0MÞ1: ð50Þ
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By using
_̂
T from Eq. (50), we can have V1

˙

≤ 0, which in turn shows that the consensus error on

observation (i.e. Δc) is stable in accordance to the Lyapunov stability theorem. It is obvious that

the observed values for u0 (i.e. T̂ ) at each agent are computed iteratively using the rate value

proposed in Eq. (50).

The lumped format for rate of observer parameter in Eq. (50) can be presented for each agent

as the following

_̂
T i ¼ �Δci �

�

X

m

r¼1

signðyirÞ � _u0Mr

�

yi ¼
X

N

j¼1

HijΔcj ¼ ½yi1, yi2,…, yim� ,
_U0M ¼ ½ _u0M1, _u0M2,…, _u0Mm�

ð51Þ

where Δc i is defined as in Eq. (35).

4.4. Adaptive law design for unknown nonlinear terms in each agent dynamics

In this subsection, the objective is to estimate the values of unknown nonlinear terms in each

agent dynamics (i.e. G in Eq. (30)). Since, there is not any data available on exact values of G,

the estimation error for adaptation process is not available. Hence, the adaptation should be

handled using the output error which in this problem is the consensus error (i.e. E in Eq. (21)).

Considering the consensus error in Eq. (21) and the agent dynamics according to Eq. (22), the

derivative for consensus error is

_E ¼ ðIN ⊗CÞEþ ðB⊗Du0Þ1 þ ðH⊗DÞU þ ðH⊗D1ÞG ð52Þ

where G here is the exact value for nonlinear terms. If we put the designed cooperative control

protocol (from Eq. (30))

ðH⊗DÞU ¼ �
�

Pþ ðIN ⊗CÞ
�

E� ðB⊗Du0Þ1 � ðH⊗D1ÞĜ ð53Þ

with Ĝ is the adapted value for the unknown nonlinear terms, into Eq. (52), we have

_E ¼ �PEþ ðH⊗D1Þ~G , ~G ¼ G� Ĝ ð54Þ

Using the following positive definite Lyapunov function

V2 ¼
1

2
ETEþ

1

2
~G
T
Γ
�1 ~G ð55Þ

where Γ∈RNn�Nn is a positive definite matrix, we have
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_V2 ¼ ET _E þ ~G
T
Γ�1 _~G

_V2 ¼ �ETPEþ ETðH⊗D1Þ~G þ ~G
T
Γ�1 _~G

ð56Þ

where the first term in the last equation is the negative definite. To show _V2 < 0, we have

ETðH⊗D1Þ~G þ ~G
T
Γ�1 _~G ¼ 0 ð57Þ

Then,

~G
T
Γ�1 _~G ¼ �ETðH⊗D1Þ~G ð58Þ

which in turn leads to this adaptive law

_̂
G ¼ � _~G ¼ þΓðHT

⊗DT
1 ÞE

Γ ¼ diagfγ1,γ2,…,γNg , γi ¼ diagfγi1,γi2,…,γitg , t ≤n
ð59Þ

Considering the Lyapunov stability theorem for the function in Eq. (55), if Ĝ is updated using

the rate value proposed in Eq. (59) iteratively, ~G converges to zeros asymptotically. It means

that the adapted parameter Ĝ will converge to the actual value of the nonlinear terms in agent

dynamics. One of the important issues of the proposed adaptive law in Eq. (59) is that it is not

required to include any set of nonlinear basis functions as regressors in the adaptive law. It is

only based on the consensus error of the network, which may have sufficient information to

tune the adaptive parameter.

Since the adapted signals are always vulnerable for being distracted and diverged by unknown

terms, two robusting methods are provided to make the designed adaptive law robust against

the divergence [21].

i. Parameter projection method

_̂
G ¼

ΓðHT
⊗DT

1 ÞE , if Ĝ
T
Ĝ < MT

0M0

I �
ΓGGT

GT
ΓG

� �

ΓðHT
⊗DT

1 ÞE , otherwise

8

>

>

<

>

>

:

ð60Þ

M0 ¼ ½M01 ,M02 ,…,M0N �
T , M0i ¼ ½M01 ,M02 ,…,M0t �

T , t ≤ n

where M0i is chosen so that M0i ≥ jgij. The value for M0 should be defined beforehand.

The algorithm is named as parameter projection in the literature [21].

ii. σ-modification or leakage method;

_̂
G ¼ þΓ

�

ðHT
⊗DT

1 ÞE� ρĜ
�

, ρ > 0∈R ð61Þ

Hence, the complete robust adaptive control for estimating the nonlinear terms in each agent’s

dynamics is presented as the following
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_̂
G ¼

ΓðHT
⊗DT

1 ÞE� ρΓĜ , if Ĝ
T
Ĝ < MT

0M0

I �
ΓGGT

GTΓG

� �

�

ΓðHT
⊗DT

1 ÞE� ρΓĜ
�

, otherwise

8

>

>

<

>

>

:

ð62Þ

M0 ¼ ½M01 ,M02 ,…,M0N � , M0i ¼ ½M01 ,M02 ,… ,M0t � , t ≤ n

The lumped format for the rate of adaptive parameter in Eq. (60) can be presented for agent i as

the following

_̂
G i ¼

γi

X

N

j¼1

Qijej � ρĜi

0

@

1

A , if Ĝ
T

i Ĝ i <MT
0M0

In �
γiGiG

T
i

GT
i γiGi

 !

γi

X

N

j¼1

Qijej � ρĜi

0

@

1

A, otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð63Þ

Q ¼ ðHT
⊗DT

1 Þ , M∈R
Nt�Nn

Qij ¼ Qðk�, r�Þ , k� ¼ ½
�

ði� 1Þ � tþ 1
�

: ði� tÞ� , r� ¼ ½
�

ðj� 1Þ � nþ 1
�

: ðj� nÞ�

5. Application: wheeled mobile robot

In this section, application of the proposed cooperative control protocol on a team including three

nonholonomic wheeled mobile robots (WMRs) is presented. The robots are moving on a smooth

planar surface with a constraint on the speed (Figure 1). They can only move in the direction of

their attitudes and speed in the perpendicular direction is zero. This is a nonholonomic constraint.

Few number of researches can be found in literatures, which deal with the cooperative control of

the multi-agent of WMRs taking account of each agent’s WMR dynamics [22, 23].

5.1. Problem definition

Here, the kinematics and dynamics for motion of ith WMR are considered as the following

_xi ¼ υi cosθi , _yi ¼ υi sinθi , _θi ¼ ωi

_υi ¼
1

m
Fi , _ω i ¼

1

J
Ti

ð64Þ

where xi and yi represent the position of a single WMR in the inertial coordinate system, θi is

the orientation of the WMR, υi is the translational speed in the WMR’s pose direction and ωi is

the angular speed of WMR about the Z axis. Also, m and J are the mass and moment of inertia

for WMR. Moreover, Fi and Ti are the force and torque generated by the electric motors

disclosed in each wheel of WMR. The last parameters are the control parameters for motion

of each WMR. By transforming the kinematics of WMR to a local coordinate system fixed to

the WMR, [24]
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xi1
xi2
xi3

2

4

3

5 ¼
cosθi sinθi 0
� sinθi cosθi 0

0 0 1

2

4

3

5

xi
yi
θi

2

4

3

5 ð65Þ

Then by considering xi4 ¼ υi and xi5 ¼ ωi, we have

_xi1 ¼ xi4 þ xi5xi2 , _xi2 ¼ �xi5xi1

_xi3 ¼ xi5 , _xi4 ¼ ui1 , _xi5 ¼ ui2
ð66Þ

where ui1 ¼
1
mFi and ui2 ¼

1
J Ti . The state-space system can be represented in matrix form

similar to Eq. (16), as the following

_X i ¼ CXi þDui þD1Gi

Xi ¼ ½xi1 ,xi2,xi3,xi4,xi5�
T , ui ¼ ½ui1,ui2�

T , Gi ¼ ½xi5xi2, � xi5xi1�
T

C ¼

0 0 0 1 0

0 0 0 0 0

0

0

0

0

0

0

0 0 1

0 0 0

0 0 0

2

6

6

6
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7

7
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7

7

5

, D ¼

0 0

0 0

0

1

0

0

0

1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

, D1 ¼

1 0

0 1

0

0

0

0

0

0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð67Þ

Figure 1. A diagram for kinematics of a nonholonomic planar wheeled robot.
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As can be seen, D is not full rank. According to assumption 2, we need a change of variables to

have D in the full-rank form. Recalling the idea of the back-stepping method [25] we have

δi1 ¼ υi � si1 , δi2 ¼ ωi � si2 ð68Þ

Applying the back-stepping method

si3 ¼ ui1 � _s i1 , si4 ¼ ui2 � _s i2 ð69Þ

we have

_xi1 ¼ δi1 þ δi2xi2 þ si1 þ xi2si2

_xi2 ¼ �δi2xi1 � xi1si2

_xi3 ¼ δi2 þ si2 , _δi1 ¼ si3 , _δi2 ¼ si4

ð70Þ

Then, the state-space representation of a single WMR can be represented in following format

X
˙

i ¼ C Xi þD ui þD1 Gi

Xi ¼ ½xi1,xi2,xi3 ,δi1 ,δi2�
T , ui ¼ ½si1, si2, si3, si4�

T

Gi ¼ ½
�

δi2xi2 þ qi1ðxi2Þ
�

,

�

� δi2xi1 þ qi2ðxi1Þ
�

�T

C ¼ C , D ¼

1 1 0 0

0 1 0 0

0

0

0

1 0 0

0 1 0

0 0 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

, D1 ¼ D1

ð71Þ

which has a full rank D matrix. Hence, assumption 2 is satisfied and the proposed cooperative

controller can be implemented. Hence, we have five state variables, four control parameters and

two nonlinear terms for eachWMR. At each agent within the network, the nonlinear terms will be

adapted using Eq. (63) and the control parameters of the leader will be observed using Eq. (51).

Here, the desired formation is a rectangle with four agents and four equal edges. The length of each

edge is equal and is r. The virtual leader is positioned at the centroid of the geometry (Figure 2).

Moreover, the communication graph for this network is shown in Figure 2. The leader information

is only available to agent 1. Hence, the adjacency matrices are defined as the following

A ¼

0 1 0 0
1 0 1 0
0
0

1
0

0
1

1
0

2

6

4

3

7

5
, DL ¼

1 0 0 0
0 2 0 0
0
0

0
0

2
0

0
1

2

6

4

3

7

5
, B ¼

1 0 0 0
0 0 0 0
0
0

0
0

0
0

0
0

2

6

4

3

7

5
ð72Þ

There is a well-known reference trajectory for this problem in the literature [20], which is

presented as the following,
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x0 ¼
υr
ωr

sinθ0 , y0 ¼ �
υr
ωr

cosθ0 , θ0 ¼ ωrt ð73Þ

where υr and ωr can be any known time-varying functions. Usually, these functions are consid-

ered as constant values. In Eq. (73), t is time.

5.2. Simulation results

The simulation for the problem defined in Section 5.1 is performed by MATLAB/Simulink. The

constant values for running the simulation are presented in Table 1.

Moreover, the values of Pi as the gain values for cooperative control protocol at each agent (see

Eq. (33)) are as follows

P1 ¼ diagf10, 10, 100, 10, 10g, P2 ¼ diag{10, 10, 12, 10, 10}

P3 ¼ diagf10, 10, 30, 10, 10g, P4 ¼ diag{10, 10, 55, 10, 10}
ð74Þ

The values in Pi are determined in a way to ensure that the whole matrix P is positive definite

and the sufficient transient performance of the whole network is achieved.

1

4 3

0

2

1

2

3

0 2

4

Figure 2. (Left) A diagram for the desired positions of four agents in a network; (right) the communication graph for a

network of four agents and a leader.

Parameter Value

Mass of each agent (M) 1 kg

Inertia of each agent (J) 1 kg/m2

Relative position of agents in the network (r) 4 m

Reference velocity (υr) 5 m/s2

Reference angular velocity (ωr) 0.25 rad/s

The adaptation rates (γ1, γ2) 0.01 & 0.1

The leakage factor (ρ) 100

The maximum value for rate of u0 ( _U0MÞ ones (4,1)

The maximum value for adapted signal (M0 ) 10� ones (2, 1)

Table 1. The constant parameters for simulation of a network of WMRs.
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The simulation results for this problem are presented in the following figures. The position of

all agents in the X-Yplane is shown in Figure 3. The consensus on both reference trajectory and

the desired formation can be seen. Actually, the desired formation is achieved gradually. In

addition, the position of the centroid of all agents is compared with the reference trajectory in

Figure 4. Moreover, the signals for translational and angular speeds of agent 4 are presented in

Figure 5. Finally, the observed data for control parameters of the leader and also the adapted

nonlinear terms at agent 4 are shown in Figures 6 and 7. Appropriate performance of pro-

posed algorithms can be inferred by these figures.
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Figure 3. The reference trajectory (red) and position of agents in the desired formation (agent #1: blue, agent #2: green,

agent #3: black and agent #4: yellow).
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Figure 4. The reference trajectory and position of the centroid of the agents in the desired formation.
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Figure 5. Translational and angular speed of agent #4.
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Figure 6. Observed data for control parameters of the leader at agent #4.
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Figure 7. Adapted nonlinear terms at agent #4.
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6. Conclusion

This chapter is dedicated to the design procedure of a cooperative control protocol for any

network consisting of agents with non-affine nonlinear dynamics and multi-input multi-output

structure. The main goal is to satisfy a tracking problem for the whole network while maintaining

a predefined formation topology in the state space of the agents’dynamics. The proposed design

procedure is including an adaptive law incorporated with a robustification method to estimate

the unknown nonlinear terms in the agents’dynamics. In addition, an observer is designed using

the consensus-type error for estimating the leader’s control parameters at each agent. Since there

are no complete information links between the leader and all agents, the observed control param-

eters of the leader are required at each agent to construct the cooperative control protocol. The

entire design procedure is analysed successfully for the stability using Lyapunov stability theo-

rem. The presented simulation results for a team of wheeled mobile robots show the appropriate

performance of the proposed method.
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