8,562 research outputs found

    Logico-linguistic semantic representation of documents

    Get PDF
    The knowledge behind the gigantic pool of data remains largely unextracted. Techniques such as ontology design, RDF representations, hpernym extraction, etc. have been used to represent the knowledge. However, the area of logic (FOPL) and linguistics (Semantics) has not been explored in depth for this purpose. Search engines suffer in extraction of specific answers to queries because of the absence of structured domain knowledge. The current paper deals with the design of formalism to extract and represent knowledge from the data in a consistent format. The application of logic and linguistics combined greatly eases and increases the precision of knowledge translation from natural language. The results clearly indicate the effectiveness of the knowledge extraction and representation methodology developed providing intelligence to machines for efficient analysis of data. The methodology helps machines to precise results in an efficient manner

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Mission Assurance: A Review of Continuity of Operations Guidance for Application to Cyber Incident Mission Impact Assessment (CIMIA)

    Get PDF
    Military organizations have embedded information technology (IT) into their core mission processes as a means to increase operational efficiency, improve decision-making quality, and shorten the sensor-to-shooter cycle. This IT-to-mission dependence can place the organizational mission at risk when an information incident (e.g., the loss or manipulation of a critical information resource) occurs. Non-military organizations typically address this type of IT risk through an introspective, enterprise-wide focused risk management program that continuously identifies, prioritizes, and documents risks so an economical set of control measures (e.g., people, processes, technology) can be selected to mitigate the risks to an acceptable level. The explicit valuation of information resources in terms of their ability to support the organizational mission objectives provides transparency and enables the creation of a continuity of operations plan and an incident recovery plan. While this type of planning has proven successful in static environments, military missions often involve dynamically changing, time-sensitive, complex, coordinated operations involving multiple organizational entities. As a consequence, risk mitigation efforts tend to be localized to each organizational entity making the enterprise-wide risk management approach to mission assurance infeasible. This thesis investigates the concept of mission assurance and presents a content analysis of existing continuity of operations elements within military and non-military guidance to assess the current policy landscape to highlight best practices and identify policy gaps in an effort to further enhance mission assurance by improving the timeliness and relevance of notification following an information incident

    Improving the Relevance of Cyber Incident Notification for Mission Assurance

    Get PDF
    Military organizations have embedded Information and Communication Technology (ICT) into their core mission processes as a means to increase operational efficiency, improve decision making quality, and shorten the kill chain. This dependence can place the mission at risk when the loss, corruption, or degradation of the confidentiality, integrity, and/or availability of a critical information resource occurs. Since the accuracy, conciseness, and timeliness of the information used in decision making processes dramatically impacts the quality of command decisions, and hence, the operational mission outcome; the recognition, quantification, and documentation of critical mission-information resource dependencies is essential for the organization to gain a true appreciation of its operational risk. This research identifies existing decision support systems and evaluates their capabilities as a means for capturing, maintaining and communicating mission-to-information resource dependency information in a timely and relevant manner to assure mission operations. This thesis answers the following research question: Which decision support technology is the best candidate for use in a cyber incident notification system to overcome limitations identified in the existing United States Air Force cyber incident notification process

    Report of the 2014 NSF Cybersecurity Summit for Large Facilities and Cyberinfrastructure

    Get PDF
    This event was supported in part by the National Science Foundation under Grant Number 1234408. Any opinions, findings, and conclusions or recommendations expressed at the event or in this report are those of the authors and do not necessarily reflect the views of the National Science Foundation

    A cloud-based supply chain management system: effects on supply chain responsiveness

    Get PDF
    Purpose: Despite the ongoing calls for the incorporation of the cloud utility model, the effect of the cloud on elements of supply chain performance is still an evolving area of research. In this paper, we develop the architecture of a cloud-based supply chain management (C-SCM) ecosystem and explore how it enhances supply chain responsiveness. Design/methodology/approach: First, we discuss the potential benefits that cloud computing can yield compared to existing mature SCM information systems and solutions through a comprehensive literature review. We conceptualize SCR in terms of the level of visibility in the supply chain, supply chain flexibility, and rapid detection and reaction to changes and then we build the detailed architecture of a cloud based SCM system. The proposed ecosystem introduces a view of SCM and the associated practices when transferred to cloud environments. The potential to enhance SCR through the cloud is explored with scenarios on a case of supply chain operations in fashion retail industry. Findings: Our findings show that the proposed system can enhance all three dimensions of SCR. Implications for supply chain practice and how companies can migrate to a cloud supply chain are drawn. Originality/Value: Given that the development, creation, and delivery of goods and services is increasingly becoming a joint effort of several parties in a supply chain, we contribute to existing literature, by introducing a comprehensive cloud-based SCM system and show how companies can enhance their supply chain responsiveness

    Technologies for safe and resilient earthmoving operations: A systematic literature review

    Get PDF
    Resilience engineering relates to the ability of a system to anticipate, prepare, and respond to predicted and unpredicted disruptions. It necessitates the use of monitoring and object detection technologies to ensure system safety in excavation systems. Given the increased investment and speed of improvement in technologies, it is necessary to review the types of technology available and how they contribute to excavation system safety. A systematic literature review was conducted which identified and classified the existing monitoring and object detection technologies, and introduced essential enablers for reliable and effective monitoring and object detection systems including: 1) the application of multisensory and data fusion approaches, and 2) system-level application of technologies. This study also identified the developed functionalities for accident anticipation, prevention and response to safety hazards during excavation, as well as those that facilitate learning in the system. The existing research gaps and future direction of research have been discussed

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease
    corecore