3,048 research outputs found

    Cloud-assisted body area networks: state-of-the-art and future challenges

    Get PDF
    Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Interference cancellation and network coding for underwater communication systems

    Get PDF
    It is widely believed that wider access to the aquatic environment will enhance human knowledge and understanding of the world's oceans which constitute the major part of our planet. Hence, the current development of underwater sensing and communication systems will produce scientific, economic and social benefits. New applications will be enabled, such as deeper ocean observation, environmental monitoring, surveying or search and rescue missions. Underwater communications differ from terrestrial communications due to the unpredictable and complex ocean conditions, relying on acoustic waves which are affected by many factors like large propagation losses, long latency, limited bandwidth capacity and channel stability, posing great challenges for reliable data transport in this kind of networks. The aim of this project is to design a future underwater acoustic communication system for dense traffic situations investigating the possibility of Medium Access with Interference Cancellation and Network Coding. The main efforts focus on reliability, low energy consumption, storage capacity, throughput and scalabilit

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Reliable & Efficient Data Centric Storage for Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have become a mature technology aimed at performing environmental monitoring and data collection. Nonetheless, harnessing the power of a WSN presents a number of research challenges. WSN application developers have to deal both with the business logic of the application and with WSN's issues, such as those related to networking (routing), storage, and transport. A middleware can cope with this emerging complexity, and can provide the necessary abstractions for the definition, creation and maintenance of applications. The final goal of most WSN applications is to gather data from the environment, and to transport such data to the user applications, that usually resides outside the WSN. Techniques for data collection can be based on external storage, local storage and in-network storage. External storage sends data to the sink (a centralized data collector that provides data to the users through other networks) as soon as they are collected. This paradigm implies the continuous presence of a sink in the WSN, and data can hardly be pre-processed before sent to the sink. Moreover, these transport mechanisms create an hotspot on the sensors around the sink. Local storage stores data on a set of sensors that depends on the identity of the sensor collecting them, and implies that requests for data must be broadcast to all the sensors, since the sink can hardly know in advance the identity of the sensors that collected the data the sink is interested in. In-network storage and in particular Data Centric Storage (DCS) stores data on a set of sensors that depend on a meta-datum describing the data. DCS is a paradigm that is promising for Data Management in WSNs, since it addresses the problem of scalability (DCS employs unicast communications to manage WSNs), allows in-network data preprocessing and can mitigate hot-spots insurgence. This thesis studies the use of DCS for Data Management in middleware for WSNs. Since WSNs can feature different paradigms for data routing (geographical routing and more traditional tree routing), this thesis introduces two different DCS protocols for these two different kinds of WNSs. Q-NiGHT is based on geographical routing and it can manage the quantity of resources that are assigned to the storage of different meta-data, and implements a load balance for the data storage over the sensors in the WSN. Z-DaSt is built on top of ZigBee networks, and exploits the standard ZigBee mechanisms to harness the power of ZigBee routing protocol and network formation mechanisms. Dependability is another issue that was subject to research work. Most current approaches employ replication as the mean to ensure data availability. A possible enhancement is the use of erasure coding to improve the persistence of data while saving on memory usage on the sensors. Finally, erasure coding was applied also to gossiping algorithms, to realize an efficient data management. The technique is compared to the state-of-the-art to identify the benefits it can provide to data collection algorithms and to data availability techniques
    • 

    corecore