1,725 research outputs found

    FORETELL: Aggregating Distributed, Heterogeneous Information from Diverse Sources Using Market-based Techniques

    Get PDF
    Predicting the outcome of uncertain events that will happen in the future is a frequently indulged task by humans while making critical decisions. The process underlying this prediction and decision making is called information aggregation, which deals with collating the opinions of different people, over time, about the future event’s possible outcome. The information aggregation problem is non-trivial as the information related to future events is distributed spatially and temporally, the information gets changed dynamically as related events happen, and, finally, people’s opinions about events’ outcomes depends on the information they have access to and the mechanism they use to form opinions from that information. This thesis addresses the problem of distributed information aggregation by building computational models and algorithms for different aspects of information aggregation so that the most likely outcome of future events can be predicted with utmost accuracy. We have employed a commonly used market-based framework called a prediction market to formally analyze the process of information aggregation. The behavior of humans performing information aggregation within a prediction market is implemented using software agents which employ sophisticated algorithms to perform complex calculations on behalf of the humans, to aggregate information efficiently. We have considered five different yet crucial problems related to information aggregation, which include: (i) the effect of variations in the parameters of the information being aggregated, such as its reliability, availability, accessibility, etc., on the predicted outcome of the event, (ii) improving the prediction accuracy by having each human (software-agent) build a more accurate model of other humans’ behavior in the prediction market, (iii) identifying how various market parameters effect its dynamics and accuracy, (iv) applying information aggregation to the domain of distributed sensor information fusion, and, (v) aggregating information on an event while considering dissimilar, but closely-related events in different prediction markets. We have verified all of our proposed techniques through analytical results and experiments while using commercially available data from real prediction markets within a simulated, multi-agent based prediction market. Our results show that our proposed techniques for information aggregation perform more efficiently or comparably with existing techniques for information aggregation using prediction markets

    Informational Substitutes

    Full text link
    We propose definitions of substitutes and complements for pieces of information ("signals") in the context of a decision or optimization problem, with game-theoretic and algorithmic applications. In a game-theoretic context, substitutes capture diminishing marginal value of information to a rational decision maker. We use the definitions to address the question of how and when information is aggregated in prediction markets. Substitutes characterize "best-possible" equilibria with immediate information aggregation, while complements characterize "worst-possible", delayed aggregation. Game-theoretic applications also include settings such as crowdsourcing contests and Q\&A forums. In an algorithmic context, where substitutes capture diminishing marginal improvement of information to an optimization problem, substitutes imply efficient approximation algorithms for a very general class of (adaptive) information acquisition problems. In tandem with these broad applications, we examine the structure and design of informational substitutes and complements. They have equivalent, intuitive definitions from disparate perspectives: submodularity, geometry, and information theory. We also consider the design of scoring rules or optimization problems so as to encourage substitutability or complementarity, with positive and negative results. Taken as a whole, the results give some evidence that, in parallel with substitutable items, informational substitutes play a natural conceptual and formal role in game theory and algorithms.Comment: Full version of FOCS 2016 paper. Single-column, 61 pages (48 main text, 13 references and appendix

    A Bayesian inference approach to unveil supply curves in electricity markets

    Get PDF

    All Men Count with You, but None Too Much: Information Aggregation and Learning in Prediction Markets.

    Full text link
    Prediction markets are markets that are set up to aggregate information from a population of traders in order to predict the outcome of an event. In this thesis, we consider the problem of designing prediction markets with discernible semantics of aggregation whose syntax is amenable to analysis. For this, we will use tools from computer science (in particular, machine learning), statistics and economics. First, we construct generalized log scoring rules for outcomes drawn from high-dimensional spaces. Next, based on this class of scoring rules, we design the class of exponential family prediction markets. We show that this market mechanism performs an aggregation of private beliefs of traders under various agent models. Finally, we present preliminary results extending this work to understand the dynamics of related markets using probabilistic graphical model techniques. We also consider the problem in reverse: using prediction markets to design machine learning algorithms. In particular, we use the idea of sequential aggregation from prediction markets to design machine learning algorithms that are suited to situations where data arrives sequentially. We focus on the design of algorithms for recommender systems that are robust against cloning attacks and that are guaranteed to perform well even when data is only partially available.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111398/1/skutty_1.pd

    Learning Performance of Prediction Markets with Kelly Bettors

    Full text link
    In evaluating prediction markets (and other crowd-prediction mechanisms), investigators have repeatedly observed a so-called "wisdom of crowds" effect, which roughly says that the average of participants performs much better than the average participant. The market price---an average or at least aggregate of traders' beliefs---offers a better estimate than most any individual trader's opinion. In this paper, we ask a stronger question: how does the market price compare to the best trader's belief, not just the average trader. We measure the market's worst-case log regret, a notion common in machine learning theory. To arrive at a meaningful answer, we need to assume something about how traders behave. We suppose that every trader optimizes according to the Kelly criteria, a strategy that provably maximizes the compound growth of wealth over an (infinite) sequence of market interactions. We show several consequences. First, the market prediction is a wealth-weighted average of the individual participants' beliefs. Second, the market learns at the optimal rate, the market price reacts exactly as if updating according to Bayes' Law, and the market prediction has low worst-case log regret to the best individual participant. We simulate a sequence of markets where an underlying true probability exists, showing that the market converges to the true objective frequency as if updating a Beta distribution, as the theory predicts. If agents adopt a fractional Kelly criteria, a common practical variant, we show that agents behave like full-Kelly agents with beliefs weighted between their own and the market's, and that the market price converges to a time-discounted frequency. Our analysis provides a new justification for fractional Kelly betting, a strategy widely used in practice for ad-hoc reasons. Finally, we propose a method for an agent to learn her own optimal Kelly fraction

    05011 Abstracts Collection -- Computing and Markets

    Get PDF
    From 03.01.05 to 07.01.05, the Dagstuhl Seminar 05011``Computing and Markets\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Modeling Complex Networks For (Electronic) Commerce

    Get PDF
    NYU, Stern School of Business, IOMS Department, Center for Digital Economy Researc

    Automatically Characterizing Product and Process Incentives in Collective Intelligence

    Get PDF
    Social media facilitate interaction and information dissemination among an unprecedented number of participants. Why do users contribute, and why do they contribute to a specific venue? Does the information they receive cover all relevant points of view, or is it biased? The substantial and increasing importance of online communication makes these questions more pressing, but also puts answers within reach of automated methods. I investigate scalable algorithms for understanding two classes of incentives which arise in collective intelligence processes. Product incentives exist when contributors have a stake in the information delivered to other users. I investigate product-relevant user behavior changes, algorithms for characterizing the topics and points of view presented in peer-produced content, and the results of a field experiment with a prediction market framework having associated product incentives. Process incentives exist when users find contributing to be intrinsically rewarding. Algorithms which are aware of process incentives predict the effect of feedback on where users will make contributions, and can learn about the structure of a conversation by observing when users choose to participate in it. Learning from large-scale social interactions allows us to monitor the quality of information and the health of venues, but also provides fresh insights into human behavior

    Efficiently detecting switches against non-stationary opponents

    Get PDF
    Interactions in multiagent systems are generally more complicated than single agent ones. Game theory provides solutions on how to act in multiagent scenarios; however, it assumes that all agents will act rationally. Moreover, some works also assume the opponent will use a stationary strategy. These assumptions usually do not hold in real world scenarios where agents have limited capacities and may deviate from a perfect rational response. Our goal is still to act optimally in these cases by learning the appropriate response and without any prior policies on how to act. Thus, we focus on the problem when another agent in the environment uses different stationary strategies over time. This will turn the problem into learning in a non-stationary environment, posing a problem for most learning algorithms. This paper introduces DriftER, an algorithm that (1) learns a model of the opponent, (2) uses that to obtain an optimal policy and then (3) determines when it must re-learn due to an opponent strategy change. We provide theoretical results showing that DriftER guarantees to detect switches with high probability. Also, we provide empirical results showing that our approach outperforms state of the art algorithms, in normal form games such as prisoner’s dilemma and then in a more realistic scenario, the Power TAC simulator
    • …
    corecore