8 research outputs found

    Distributed solution methods for MPC based energy management method of interconnected microgrids: Dual ascent vs ADMM

    Full text link
    This paper considers an optimal energy management problem for a network of interconnected microgrids. A model predictive control (MPC) approach is used to avoid capacity constraint violation and to cope with uncertainties of forecasted power demands. By employing a dual ascent method and a proximal alternative direction multiplier method (ADMM), respectively, two distributed methods are designed to allow every agent using only local information to determine its own optimal control decisions. The effectiveness of the proposed method is verified via numerical simulations

    Zonally Robust Decentralized Optimization for Global Energy Interconnection:Case Study on Northeast Asian Countries

    Get PDF

    Ubicaci贸n de recursos distribuidos basado en flujos de potencia usando optimizaci贸n por enjambre de part铆culas.

    Get PDF
    This article presents an analysis of the location, selection and optimal sizing of distributed generation in electrical distribution networks, obtaining an optimal power flow with active power compensation, through the implementation of the particle swarm optimization algorithm (PSO). The PSO allowed to solve the problem selecting the optimal nodes and the capacity of the distributed generation to install, fulfilling the objective of improving the parameters of quality and efficiency at the lowest possible cost. The simulation and analysis were made in a typical system of radial distribution of 15 nodes, with the Matlab computational tool, achieving a power flow that meets technical, economic and environmental conditions. The injection of active power by means of distributed generation allowed to obtain values of improved voltages in each node, minimizing indexes of average voltage deviation and maximum deviation. The proposed results were achieved by increasing the voltage levels, reducing power losses in the lines and complying with a minimum cost criterion.Este art铆culo presenta un an谩lisis de ubicaci贸n, selecci贸n y dimensionamiento 贸ptimo de generaci贸n distribuida en redes de distribuci贸n el茅ctrica, obteniendo un flujo 贸ptimo de potencia con compensaci贸n de potencia activa, mediante la implementaci贸n del algoritmo de optimizaci贸n por enjambre de part铆culas (PSO). El PSO permiti贸 resolver el problema seleccionando los nodos 贸ptimos y la capacidad de la generaci贸n distribuida a instalar, cumpliendo con el objetivo de mejorar los par谩metros de calidad y eficiencia al menor costo posible. La simulaci贸n y an谩lisis se realizaron en un sistema t铆pico de distribuci贸n radial de 15 nodos, con la herramienta computacional Matlab, consiguiendo un flujo de potencia que cumple con condiciones t茅cnicas, econ贸micas y ambientales. La inyecci贸n de potencia activa mediante generaci贸n distribuida, permiti贸 obtener valores de voltajes mejorados en cada nodo, minimizando 铆ndices de desviaci贸n promedio de voltaje y de m谩xima desviaci贸n. Los resultados propuestos se lograron, aumentando los niveles de voltaje, reduciendo p茅rdidas de potencia en las l铆neas y cumpliendo con un criterio de m铆nimo costo

    Distributed optimal coordination for distributed energy resources in power systems

    Get PDF
    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms, the coordination agent at each DER maintains only a set of variables and updates them through information exchange with a few neighbors. We show that the proposed algorithms with properly chosen parameters solve the DER coordination problem as long as the underlying communication network is connected. The simulation results are used to illustrate and validate the proposed method

    Distributed Optimal Coordination for Distributed Energy Resources in Power Systems

    No full text
    corecore