39,553 research outputs found

    Distributed Online Data Aggregation in Dynamic Graphs

    Get PDF
    We consider the problem of aggregating data in a dynamic graph, that is, aggregating the data that originates from all nodes in the graph to a specific node, the sink. We are interested in giving lower bounds for this problem, under different kinds of adversaries. In our model, nodes are endowed with unlimited memory and unlimited computational power. Yet, we assume that communications between nodes are carried out with pairwise interactions, where nodes can exchange control information before deciding whether they transmit their data or not, given that each node is allowed to transmit its data at most once. When a node receives a data from a neighbor, the node may aggregate it with its own data. We consider three possible adversaries: the online adaptive adversary, the oblivious adversary , and the randomized adversary that chooses the pairwise interactions uniformly at random. For the online adaptive and the oblivious adversary, we give impossibility results when nodes have no knowledge about the graph and are not aware of the future. Also, we give several tight bounds depending on the knowledge (be it topology related or time related) of the nodes. For the randomized adversary, we show that the Gathering algorithm, which always commands a node to transmit, is optimal if nodes have no knowledge at all. Also, we propose an algorithm called Waiting Greedy, where a node either waits or transmits depending on some parameter, that is optimal when each node knows its future pairwise interactions with the sink

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    Monte Carlo Algorithm for Simulating Reversible Aggregation of Multisite Particles

    Full text link
    We present an efficient and exact Monte Carlo algorithm to simulate reversible aggregation of particles with dedicated binding sites. This method introduces a novel data structure of dynamic bond tree to record clusters and sequences of bond formations. The algorithm achieves a constant time cost for processing cluster association and a cost between O(logM)\mathcal{O}(\log M) and O(M)\mathcal{O}(M) for processing bond dissociation in clusters with MM bonds. The algorithm is statistically exact and can reproduce results obtained by the standard method. We applied the method to simulate a trivalent ligand and a bivalent receptor clustering system and obtained an average scaling of O(M0.45)\mathcal{O}(M^{0.45}) for processing bond dissociation in acyclic aggregation, compared to a linear scaling with the cluster size in standard methods. The algorithm also demands substantially less memory than the conventional method.Comment: 8 pages, 3 figure

    C2MS: Dynamic Monitoring and Management of Cloud Infrastructures

    Full text link
    Server clustering is a common design principle employed by many organisations who require high availability, scalability and easier management of their infrastructure. Servers are typically clustered according to the service they provide whether it be the application(s) installed, the role of the server or server accessibility for example. In order to optimize performance, manage load and maintain availability, servers may migrate from one cluster group to another making it difficult for server monitoring tools to continuously monitor these dynamically changing groups. Server monitoring tools are usually statically configured and with any change of group membership requires manual reconfiguration; an unreasonable task to undertake on large-scale cloud infrastructures. In this paper we present the Cloudlet Control and Management System (C2MS); a system for monitoring and controlling dynamic groups of physical or virtual servers within cloud infrastructures. The C2MS extends Ganglia - an open source scalable system performance monitoring tool - by allowing system administrators to define, monitor and modify server groups without the need for server reconfiguration. In turn administrators can easily monitor group and individual server metrics on large-scale dynamic cloud infrastructures where roles of servers may change frequently. Furthermore, we complement group monitoring with a control element allowing administrator-specified actions to be performed over servers within service groups as well as introduce further customized monitoring metrics. This paper outlines the design, implementation and evaluation of the C2MS.Comment: Proceedings of the The 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2013), 8 page
    corecore