35,693 research outputs found

    Stable Nonlinear Identification From Noisy Repeated Experiments via Convex Optimization

    Get PDF
    This paper introduces new techniques for using convex optimization to fit input-output data to a class of stable nonlinear dynamical models. We present an algorithm that guarantees consistent estimates of models in this class when a small set of repeated experiments with suitably independent measurement noise is available. Stability of the estimated models is guaranteed without any assumptions on the input-output data. We first present a convex optimization scheme for identifying stable state-space models from empirical moments. Next, we provide a method for using repeated experiments to remove the effect of noise on these moment and model estimates. The technique is demonstrated on a simple simulated example

    Stochastic stability for a model representing the intake manifold pressure of an automotive engine

    Get PDF
    The paper presents conditions to assure stochastic stability for a nonlinear model. The proposed model is used to represent the input-output dynamics of the angle of aperture of the throttle valve (input) and the manifold absolute pressure (output) in an automotive spark-ignition engine. The automotive model is second moment stable, as stated by the theoretical result—data collected from real-time experiments supports this finding.Peer ReviewedPostprint (author's final draft

    A unified framework for solving a general class of conditional and robust set-membership estimation problems

    Full text link
    In this paper we present a unified framework for solving a general class of problems arising in the context of set-membership estimation/identification theory. More precisely, the paper aims at providing an original approach for the computation of optimal conditional and robust projection estimates in a nonlinear estimation setting where the operator relating the data and the parameter to be estimated is assumed to be a generic multivariate polynomial function and the uncertainties affecting the data are assumed to belong to semialgebraic sets. By noticing that the computation of both the conditional and the robust projection optimal estimators requires the solution to min-max optimization problems that share the same structure, we propose a unified two-stage approach based on semidefinite-relaxation techniques for solving such estimation problems. The key idea of the proposed procedure is to recognize that the optimal functional of the inner optimization problems can be approximated to any desired precision by a multivariate polynomial function by suitably exploiting recently proposed results in the field of parametric optimization. Two simulation examples are reported to show the effectiveness of the proposed approach.Comment: Accpeted for publication in the IEEE Transactions on Automatic Control (2014

    Towards Efficient Maximum Likelihood Estimation of LPV-SS Models

    Full text link
    How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods proposed in the literature suffer heavily from the curse of dimensionality and/or depend on over-restrictive approximations of the measured signal behaviors. However, obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relatively low computational load. The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system

    Identification of Stochastic Wiener Systems using Indirect Inference

    Full text link
    We study identification of stochastic Wiener dynamic systems using so-called indirect inference. The main idea is to first fit an auxiliary model to the observed data and then in a second step, often by simulation, fit a more structured model to the estimated auxiliary model. This two-step procedure can be used when the direct maximum-likelihood estimate is difficult or intractable to compute. One such example is the identification of stochastic Wiener systems, i.e.,~linear dynamic systems with process noise where the output is measured using a non-linear sensor with additive measurement noise. It is in principle possible to evaluate the log-likelihood cost function using numerical integration, but the corresponding optimization problem can be quite intricate. This motivates studying consistent, but sub-optimal, identification methods for stochastic Wiener systems. We will consider indirect inference using the best linear approximation as an auxiliary model. We show that the key to obtain a reliable estimate is to use uncertainty weighting when fitting the stochastic Wiener model to the auxiliary model estimate. The main technical contribution of this paper is the corresponding asymptotic variance analysis. A numerical evaluation is presented based on a first-order finite impulse response system with a cubic non-linearity, for which certain illustrative analytic properties are derived.Comment: The 17th IFAC Symposium on System Identification, SYSID 2015, Beijing, China, October 19-21, 201
    • …
    corecore