12 research outputs found

    Distributed Multi-Task Relationship Learning

    Full text link
    Multi-task learning aims to learn multiple tasks jointly by exploiting their relatedness to improve the generalization performance for each task. Traditionally, to perform multi-task learning, one needs to centralize data from all the tasks to a single machine. However, in many real-world applications, data of different tasks may be geo-distributed over different local machines. Due to heavy communication caused by transmitting the data and the issue of data privacy and security, it is impossible to send data of different task to a master machine to perform multi-task learning. Therefore, in this paper, we propose a distributed multi-task learning framework that simultaneously learns predictive models for each task as well as task relationships between tasks alternatingly in the parameter server paradigm. In our framework, we first offer a general dual form for a family of regularized multi-task relationship learning methods. Subsequently, we propose a communication-efficient primal-dual distributed optimization algorithm to solve the dual problem by carefully designing local subproblems to make the dual problem decomposable. Moreover, we provide a theoretical convergence analysis for the proposed algorithm, which is specific for distributed multi-task relationship learning. We conduct extensive experiments on both synthetic and real-world datasets to evaluate our proposed framework in terms of effectiveness and convergence.Comment: To appear in KDD 201

    Distributed Primal-Dual Optimization for Online Multi-Task Learning

    Full text link
    Conventional online multi-task learning algorithms suffer from two critical limitations: 1) Heavy communication caused by delivering high velocity of sequential data to a central machine; 2) Expensive runtime complexity for building task relatedness. To address these issues, in this paper we consider a setting where multiple tasks are geographically located in different places, where one task can synchronize data with others to leverage knowledge of related tasks. Specifically, we propose an adaptive primal-dual algorithm, which not only captures task-specific noise in adversarial learning but also carries out a projection-free update with runtime efficiency. Moreover, our model is well-suited to decentralized periodic-connected tasks as it allows the energy-starved or bandwidth-constraint tasks to postpone the update. Theoretical results demonstrate the convergence guarantee of our distributed algorithm with an optimal regret. Empirical results confirm that the proposed model is highly effective on various real-world datasets
    corecore