9,304 research outputs found

    Streaming, Distributed Variational Inference for Bayesian Nonparametrics

    Full text link
    This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.Comment: This paper was presented at NIPS 2015. Please use the following BibTeX citation: @inproceedings{Campbell15_NIPS, Author = {Trevor Campbell and Julian Straub and John W. {Fisher III} and Jonathan P. How}, Title = {Streaming, Distributed Variational Inference for Bayesian Nonparametrics}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2015}

    Accelerated Parallel Non-conjugate Sampling for Bayesian Non-parametric Models

    Full text link
    Inference of latent feature models in the Bayesian nonparametric setting is generally difficult, especially in high dimensional settings, because it usually requires proposing features from some prior distribution. In special cases, where the integration is tractable, we could sample new feature assignments according to a predictive likelihood. However, this still may not be efficient in high dimensions. We present a novel method to accelerate the mixing of latent variable model inference by proposing feature locations from the data, as opposed to the prior. First, we introduce our accelerated feature proposal mechanism that we will show is a valid Bayesian inference algorithm and next we propose an approximate inference strategy to perform accelerated inference in parallel. This sampling method is efficient for proper mixing of the Markov chain Monte Carlo sampler, computationally attractive, and is theoretically guaranteed to converge to the posterior distribution as its limiting distribution.Comment: Previously known as "Accelerated Inference for Latent Variable Models

    A Tutorial on Bayesian Nonparametric Models

    Full text link
    A key problem in statistical modeling is model selection, how to choose a model at an appropriate level of complexity. This problem appears in many settings, most prominently in choosing the number ofclusters in mixture models or the number of factors in factor analysis. In this tutorial we describe Bayesian nonparametric methods, a class of methods that side-steps this issue by allowing the data to determine the complexity of the model. This tutorial is a high-level introduction to Bayesian nonparametric methods and contains several examples of their application.Comment: 28 pages, 8 figure
    • …
    corecore