research

Streaming, Distributed Variational Inference for Bayesian Nonparametrics

Abstract

This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.Comment: This paper was presented at NIPS 2015. Please use the following BibTeX citation: @inproceedings{Campbell15_NIPS, Author = {Trevor Campbell and Julian Straub and John W. {Fisher III} and Jonathan P. How}, Title = {Streaming, Distributed Variational Inference for Bayesian Nonparametrics}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2015}

    Similar works

    Full text

    thumbnail-image

    Available Versions