144,535 research outputs found

    Advanced Control for Energy Management of Grid-Connected Hybrid Power Systems in the Sugar Cane Industry

    Get PDF
    This work presents a process supervision and advanced control structure, based on Model Predictive Control (MPC) coupled with disturbance estimation techniques and a finite-state machine decision system, responsible for setting energy productions set-points. This control scheme is applied to energy generation optimization in a sugar cane power plant, with non-dispatchable renewable sources, such as photovoltaic and wind power generation, as well as dispatchable sources, as biomass. The energy plant is bound to produce steam in different pressures, cold water and, imperiously, has to produce and maintain an amount of electric power throughout each month, defined by contract rules with a local distribution network operator (DNO). The proposed predictive control structure uses feedforward compensation of estimated future disturbances, obtained by the Double Exponential Smoothing (DES) method. The control algorithm has the task of performing the management of which energy system to use, maximize the use of the renewable energy sources, manage the use of energy storage units and optimize energy generation due to contract rules, while aiming to maximize economic profits. Through simulation, the proposed system is compared to a MPC structure, with standard techniques, and shows improved behavior.Ministerio de Economía y Competitividad CNPq401126/2014-5Ministerio de Economía y Competitividad CNPq303702/2011-7Ministerio de Economía y Competitividad DPI2016-78338-

    A MPC Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization

    Get PDF
    In this paper, a novel model predictive control strategy, with a 24-h prediction horizon, is proposed to reduce the operational cost of microgrids. To overcome the complexity of the optimization problems arising from the operation of the microgrid at each step, an adaptive evolutionary strategy with a satisfactory trade-off between exploration and exploitation capabilities was added to the model predictive control. The proposed strategy was evaluated using a representative microgrid that includes a wind turbine, a photovoltaic plant, a microturbine, a diesel engine, and an energy storage system. The achieved results demonstrate the validity of the proposed approach, outperforming a global scheduling planner-based on a genetic algorithm by 14.2% in terms of operational cost. In addition, the proposed approach also better manages the use of the energy storage system.Ministerio de Economía y Competitividad DPI2016-75294-C2-2-RUnión Europea (Programa Horizonte 2020) 76409
    corecore