143 research outputs found

    Energy-efficient optimal power allocation in integrated wireless sensor and cognitive satellite terrestrial networks

    Get PDF
    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Optimizing performance and energy efficiency of group communication and internet of things in cognitive radio networks

    Get PDF
    Data traffic in the wireless networks has grown at an unprecedented rate. While traditional wireless networks follow fixed spectrum assignment, spectrum scarcity problem becomes a major challenge in the next generations of wireless networks. Cognitive radio is a promising candidate technology that can mitigate this critical challenge by allowing dynamic spectrum access and increasing the spectrum utilization. As users and data traffic demands increases, more efficient communication methods to support communication in general, and group communication in particular, are needed. On the other hand, limited battery for the wireless network device in general makes it a bottleneck for enhancing the performance of wireless networks. In this thesis, the problem of optimizing the performance of group communication in CRNs is studied. Moreover, energy efficient and wireless-powered group communication in CRNs are considered. Additionally, a cognitive mobile base station and a cognitive UAV are proposed for the purpose of optimizing energy transfer and data dissemination, respectively. First, a multi-objective optimization for many-to-many communication in CRNs is considered. Given a many-to-many communication request, the goal is to support message routing from each user in the many-to-many group to each other. The objectives are minimizing the delay and the number of used links and maximizing data rate. The network is modeled using a multi-layer hyper graph, and the secondary users\u27 transmission is scheduled after establishing the conflict graph. Due to the difficulty of solving the problem optimally, a modified version of an Ant Colony meta-heuristic algorithm is employed to solve the problem. Additionally, energy efficient multicast communication in CRNs is introduced while considering directional and omnidirectional antennas. The multicast service is supported such that the total energy consumption of data transmission and channel switching is minimized. The optimization problem is formulated as a Mixed Integer Linear Program (MILP), and a heuristic algorithm is proposed to solve the problem in polynomial time. Second, wireless-powered machine-to-machine multicast communication in cellular networks is studied. To incentivize Internet of Things (IoT) devices to participate in forwarding the multicast messages, each IoT device participates in messages forwarding receives Radio Frequency (RF) energy form Energy Transmitters (ET) not less than the amount of energy used for messages forwarding. The objective is to minimize total transferred energy by the ETs. The problem is formulated mathematically as a Mixed Integer Nonlinear Program (MINLP), and a Generalized Bender Decomposition with Successive Convex Programming (GBD-SCP) algorithm is introduced to get an approximate solution since there is no efficient way in general to solve the problem optimally. Moreover, another algorithm, Constraints Decomposition with SCP and Binary Variable Relaxation (CDR), is proposed to get an approximate solution in a more efficient way. On the other hand, a cognitive mobile station base is proposed to transfer data and energy to a group of IoT devices underlying a primary network. Total energy consumed by the cognitive base station in its mobility, data transmission and energy transfer is minimized. Moreover, the cognitive base station adjusts its location and transmission power and transmission schedule such that data and energy demands are supported within a certain tolerable time and the primary users are protected from harmful interference. Finally, we consider a cognitive Unmanned Aerial Vehicle (UAV) to disseminate data to IoT devices. The UAV senses the spectrum and finds an idle channel, then it predicts when the corresponding primary user of the selected channel becomes active based on the elapsed time of the off period. Accordingly, it starts its transmission at the beginning of the next frame right after finding the channel is idle. Moreover, it decides the number of the consecutive transmission slots that it will use such that the number of interfering slots to the corresponding primary user does not exceed a certain threshold. A mathematical problem is formulated to maximize the minimum number of bits received by the IoT devices. A successive convex programming-based algorithm is used to get a solution for the problem in an efficiency way. It is shown that the used algorithm converges to a Kuhn Tucker point
    • …
    corecore