383 research outputs found

    Online and Differentially-Private Tensor Decomposition

    Get PDF
    In this paper, we resolve many of the key algorithmic questions regarding robustness, memory efficiency, and differential privacy of tensor decomposition. We propose simple variants of the tensor power method which enjoy these strong properties. We present the first guarantees for online tensor power method which has a linear memory requirement. Moreover, we present a noise calibrated tensor power method with efficient privacy guarantees. At the heart of all these guarantees lies a careful perturbation analysis derived in this paper which improves up on the existing results significantly.Comment: 19 pages, 9 figures. To appear at the 30th Annual Conference on Advances in Neural Information Processing Systems (NIPS 2016), to be held at Barcelona, Spain. Fix small typos in proofs of Lemmas C.5 and C.

    Privacy-Preserving Matrix Factorization for Recommendation Systems using Gaussian Mechanism

    Full text link
    Building a recommendation system involves analyzing user data, which can potentially leak sensitive information about users. Anonymizing user data is often not sufficient for preserving user privacy. Motivated by this, we propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization, which is one of the most popular algorithms for recommendation systems. As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information even if the adversary possesses their publicly available (auxiliary) information. We implement differential privacy via the Gaussian mechanism in the form of output perturbation and release user profiles that satisfy privacy definitions. We employ R\'enyi Differential Privacy for a tight characterization of the overall privacy loss. We perform extensive experiments on real data to demonstrate that our proposed algorithm can offer excellent utility for some parameter choices, while guaranteeing strict privacy.Comment: 30 page
    • …
    corecore