342,573 research outputs found

    Distributed Detection of Cycles

    Full text link
    Distributed property testing in networks has been introduced by Brakerski and Patt-Shamir (2011), with the objective of detecting the presence of large dense sub-networks in a distributed manner. Recently, Censor-Hillel et al. (2016) have shown how to detect 3-cycles in a constant number of rounds by a distributed algorithm. In a follow up work, Fraigniaud et al. (2016) have shown how to detect 4-cycles in a constant number of rounds as well. However, the techniques in these latter works were shown not to generalize to larger cycles CkC_k with k≥5k\geq 5. In this paper, we completely settle the problem of cycle detection, by establishing the following result. For every k≥3k\geq 3, there exists a distributed property testing algorithm for CkC_k-freeness, performing in a constant number of rounds. All these results hold in the classical CONGEST model for distributed network computing. Our algorithm is 1-sided error. Its round-complexity is O(1/ϵ)O(1/\epsilon) where ϵ∈(0,1)\epsilon\in(0,1) is the property testing parameter measuring the gap between legal and illegal instances

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Beyond Distributed Subgraph Detection: Induced Subgraphs, Multicolored Problems and Graph Parameters

    Get PDF
    Subgraph detection has recently been one of the most studied problems in the CONGEST model of distributed computing. In this work, we study the distributed complexity of problems closely related to subgraph detection, mainly focusing on induced subgraph detection. The main line of this work presents lower bounds and parameterized algorithms w.r.t structural parameters of the input graph: - On general graphs, we give unconditional lower bounds for induced detection of cycles and patterns of treewidth 2 in CONGEST. Moreover, by adapting reductions from centralized parameterized complexity, we prove lower bounds in CONGEST for detecting patterns with a 4-clique, and for induced path detection conditional on the hardness of triangle detection in the congested clique. - On graphs of bounded degeneracy, we show that induced paths can be detected fast in CONGEST using techniques from parameterized algorithms, while detecting cycles and patterns of treewidth 2 is hard. - On graphs of bounded vertex cover number, we show that induced subgraph detection is easy in CONGEST for any pattern graph. More specifically, we adapt a centralized parameterized algorithm for a more general maximum common induced subgraph detection problem to the distributed setting. In addition to these induced subgraph detection results, we study various related problems in the CONGEST and congested clique models, including for multicolored versions of subgraph-detection-like problems

    Interconnection network with a shared whiteboard: Impact of (a)synchronicity on computing power

    Get PDF
    In this work we study the computational power of graph-based models of distributed computing in which each node additionally has access to a global whiteboard. A node can read the contents of the whiteboard and, when activated, can write one message of O(log n) bits on it. When the protocol terminates, each node computes the output based on the final contents of the whiteboard. We consider several scheduling schemes for nodes, providing a strict ordering of their power in terms of the problems which can be solved with exactly one activation per node. The problems used to separate the models are related to Maximal Independent Set, detection of cycles of length 4, and BFS spanning tree constructions

    Sublinear-Time Distributed Algorithms for Detecting Small Cliques and Even Cycles

    Get PDF
    In this paper we give sublinear-time distributed algorithms in the CONGEST model for subgraph detection for two classes of graphs: cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be listed in sublinear time, O(n^{5/6+o(1)}) rounds and O(n^{21/22+o(1)}) rounds, respectively. Prior to our work, it was not known whether it was possible to even check if the network contains a 4-clique or a 5-clique in sublinear time. For even-length cycles, C_{2k}, we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from O~(n^{5/6}) to O~(n^{3/4}) rounds. We also show two obstacles on proving lower bounds for C_{2k}-freeness: First, we use the new connection to extremal combinatorics to show that the current lower bound of Omega~(sqrt{n}) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant delta in (0,1/2) such that for any k, a Omega(n^{1/2+delta}) lower bound on C_{2k}-freeness implies new lower bounds in circuit complexity. For general subgraphs, it was shown in [Orr Fischer et al., 2018] that for any fixed k, there exists a subgraph H of size k such that H-freeness requires Omega~(n^{2-Theta(1/k)}) rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in O(n^{2 - Theta(1/k)}) rounds, nearly matching the lower bound of [Orr Fischer et al., 2018]

    Design of deadlock detection and prevention algorithms in distributed systems

    Full text link
    A distributed system consists of a collection of processes which communicate with each other by exchanging messages to achieve a common goal. One of the key problems in distributed systems is the possibility of deadlock. Processes are said to be deadlocked when some processes are blocked on resource requests that can never be satisfied unless drastic systems action is taken. Two distributed deadlock detection algorithms handling multiple outstanding requests is proposed and are proven to be correct: it detects all cycles and does not detect false deadlocks. The algorithms are based on the concept of chasing the edge of the waitfor graph (probe-based). Simulation results show that the proposed algorithm performs very well compared to some existing algorithms. A deadlock prevention algorithm based on the notion of coloring the nodes of the waitfor graph is also proposed. Rollback is quite less compared to some existing algorithms

    Smart sensors in asphalt monitoring key process parameters during and post construction

    Get PDF
    International audienceThe Fibre Bragg Gratings (FBG) technology based on integrated photonics, offers specific benefits including thermal mapping, damage detection, shape-and distributed sensing. This makes it useful for determining pavement behaviour during extreme weather conditions e.g. freeze-thaw cycles when harsh winter conditions could damage the asphalt surfacing layer. However, the harsh construction environment and traffic loading highlights the high-risk challenge of installing the sensor into the asphalt layer in a non-invasive manner so that the key parameters are accurately measured during and after construction
    • …
    corecore