1,524 research outputs found

    On the Complexity of Distributed Splitting Problems

    Full text link
    One of the fundamental open problems in the area of distributed graph algorithms is the question of whether randomization is needed for efficient symmetry breaking. While there are fast, polylogn\text{poly}\log n-time randomized distributed algorithms for all of the classic symmetry breaking problems, for many of them, the best deterministic algorithms are almost exponentially slower. The following basic local splitting problem, which is known as the \emph{weak splitting} problem takes a central role in this context: Each node of a graph G=(V,E)G=(V,E) has to be colored red or blue such that each node of sufficiently large degree has at least one node of each color among its neighbors. Ghaffari, Kuhn, and Maus [STOC '17] showed that this seemingly simple problem is complete w.r.t. the above fundamental open question in the following sense: If there is an efficient polylogn\text{poly}\log n-time determinstic distributed algorithm for weak splitting, then there is such an algorithm for all locally checkable graph problems for which an efficient randomized algorithm exists. In this paper, we investigate the distributed complexity of weak splitting and some closely related problems. E.g., we obtain efficient algorithms for special cases of weak splitting, where the graph is nearly regular. In particular, we show that if δ\delta and Δ\Delta are the minimum and maximum degrees of GG and if δ=Ω(logn)\delta=\Omega(\log n), weak splitting can be solved deterministically in time O(Δδpoly(logn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log n)\big). Further, if δ=Ω(loglogn)\delta = \Omega(\log\log n) and Δ2εδ\Delta\leq 2^{\varepsilon\delta}, there is a randomized algorithm with time complexity O(Δδpoly(loglogn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log\log n)\big)

    Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

    Full text link
    We present a deterministic distributed algorithm that computes a (2Δ1)(2\Delta-1)-edge-coloring, or even list-edge-coloring, in any nn-node graph with maximum degree Δ\Delta, in O(log7Δlogn)O(\log^7 \Delta \log n) rounds. This answers one of the long-standing open questions of \emph{distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2O(logn)2^{O(\sqrt{\log n})} by Panconesi and Srinivasan [STOC'92] and O~(Δ)+O(logn)\tilde{O}(\sqrt{\Delta}) + O(\log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS'16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2Δ1)(2\Delta-1)-edge-coloring to poly(loglogn)(\log\log n) rounds. The key technical ingredient is a deterministic distributed algorithm for \emph{hypergraph maximal matching}, which we believe will be of interest beyond this result. In any hypergraph of rank rr --- where each hyperedge has at most rr vertices --- with nn nodes and maximum degree Δ\Delta, this algorithm computes a maximal matching in O(r5log6+logrΔlogn)O(r^5 \log^{6+\log r } \Delta \log n) rounds. This hypergraph matching algorithm and its extensions lead to a number of other results. In particular, a polylogarithmic-time deterministic distributed maximal independent set algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkin's book, a ((logΔ/ε)O(log(1/ε)))((\log \Delta/\varepsilon)^{O(\log (1/\varepsilon))})-round deterministic algorithm for (1+ε)(1+\varepsilon)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ\lambda-arboricity graphs with out-degree at most (1+ε)λ(1+\varepsilon)\lambda, for any constant ε>0\varepsilon>0, hence partially answering Open Problem 10 of Barenboim and Elkin's book

    On the Complexity of Local Distributed Graph Problems

    Full text link
    This paper is centered on the complexity of graph problems in the well-studied LOCAL model of distributed computing, introduced by Linial [FOCS '87]. It is widely known that for many of the classic distributed graph problems (including maximal independent set (MIS) and (Δ+1)(\Delta+1)-vertex coloring), the randomized complexity is at most polylogarithmic in the size nn of the network, while the best deterministic complexity is typically 2O(logn)2^{O(\sqrt{\log n})}. Understanding and narrowing down this exponential gap is considered to be one of the central long-standing open questions in the area of distributed graph algorithms. We investigate the problem by introducing a complexity-theoretic framework that allows us to shed some light on the role of randomness in the LOCAL model. We define the SLOCAL model as a sequential version of the LOCAL model. Our framework allows us to prove completeness results with respect to the class of problems which can be solved efficiently in the SLOCAL model, implying that if any of the complete problems can be solved deterministically in logO(1)n\log^{O(1)} n rounds in the LOCAL model, we can deterministically solve all efficient SLOCAL-problems (including MIS and (Δ+1)(\Delta+1)-coloring) in logO(1)n\log^{O(1)} n rounds in the LOCAL model. We show that a rather rudimentary looking graph coloring problem is complete in the above sense: Color the nodes of a graph with colors red and blue such that each node of sufficiently large polylogarithmic degree has at least one neighbor of each color. The problem admits a trivial zero-round randomized solution. The result can be viewed as showing that the only obstacle to getting efficient determinstic algorithms in the LOCAL model is an efficient algorithm to approximately round fractional values into integer values

    Distributed local approximation algorithms for maximum matching in graphs and hypergraphs

    Full text link
    We describe approximation algorithms in Linial's classic LOCAL model of distributed computing to find maximum-weight matchings in a hypergraph of rank rr. Our main result is a deterministic algorithm to generate a matching which is an O(r)O(r)-approximation to the maximum weight matching, running in O~(rlogΔ+log2Δ+logn)\tilde O(r \log \Delta + \log^2 \Delta + \log^* n) rounds. (Here, the O~()\tilde O() notations hides polyloglog Δ\text{polyloglog } \Delta and polylog r\text{polylog } r factors). This is based on a number of new derandomization techniques extending methods of Ghaffari, Harris & Kuhn (2017). As a main application, we obtain nearly-optimal algorithms for the long-studied problem of maximum-weight graph matching. Specifically, we get a (1+ϵ)(1+\epsilon) approximation algorithm using O~(logΔ/ϵ3+polylog(1/ϵ,loglogn))\tilde O(\log \Delta / \epsilon^3 + \text{polylog}(1/\epsilon, \log \log n)) randomized time and O~(log2Δ/ϵ4+logn/ϵ)\tilde O(\log^2 \Delta / \epsilon^4 + \log^*n / \epsilon) deterministic time. The second application is a faster algorithm for hypergraph maximal matching, a versatile subroutine introduced in Ghaffari et al. (2017) for a variety of local graph algorithms. This gives an algorithm for (2Δ1)(2 \Delta - 1)-edge-list coloring in O~(log2Δlogn)\tilde O(\log^2 \Delta \log n) rounds deterministically or O~((loglogn)3)\tilde O( (\log \log n)^3 ) rounds randomly. Another consequence (with additional optimizations) is an algorithm which generates an edge-orientation with out-degree at most (1+ϵ)λ\lceil (1+\epsilon) \lambda \rceil for a graph of arboricity λ\lambda; for fixed ϵ\epsilon this runs in O~(log6n)\tilde O(\log^6 n) rounds deterministically or O~(log3n)\tilde O(\log^3 n ) rounds randomly

    New Classes of Distributed Time Complexity

    Full text link
    A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π\Pi in which a solution can be verified by checking all radius-O(1)O(1) neighbourhoods, and the question is what is the smallest TT such that a solution can be computed so that each node chooses its own output based on its radius-TT neighbourhood. Here TT is the distributed time complexity of Π\Pi. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1)\Theta(1), Θ(logn)\Theta(\log^* n), Θ(logn)\Theta(\log n), Θ(n1/k)\Theta(n^{1/k}), and Θ(n)\Theta(n). It is also known that there are two gaps: one between ω(1)\omega(1) and o(loglogn)o(\log \log^* n), and another between ω(logn)\omega(\log^* n) and o(logn)o(\log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple -- indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logαn)\Theta(\log^{\alpha}n) for any α1\alpha\ge1, 2Θ(logαn)2^{\Theta(\log^{\alpha}n)} for any α1\alpha\le 1, and Θ(nα)\Theta(n^{\alpha}) for any α<1/2\alpha <1/2 in the high end of the complexity spectrum, and Θ(logαlogn)\Theta(\log^{\alpha}\log^* n) for any α1\alpha\ge 1, 2Θ(logαlogn)\smash{2^{\Theta(\log^{\alpha}\log^* n)}} for any α1\alpha\le 1, and Θ((logn)α)\Theta((\log^* n)^{\alpha}) for any α1\alpha \le 1 in the low end; here α\alpha is a positive rational number

    On Derandomizing Local Distributed Algorithms

    Full text link
    The gap between the known randomized and deterministic local distributed algorithms underlies arguably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing LOCAL algorithms. We also exhibit how this simple recipe leads to significant improvements on a number of problem. Two main results are: - An improved distributed hypergraph maximal matching algorithm, improving on Fischer, Ghaffari, and Kuhn [FOCS'17], and giving improved algorithms for edge-coloring, maximum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. - An improved distributed algorithm for the Lov\'{a}sz Local Lemma, which gets closer to a conjecture of Chang and Pettie [FOCS'17], and moreover leads to improved distributed algorithms for problems such as defective coloring and kk-SAT.Comment: 37 page
    corecore