535 research outputs found

    Asymptotic and Finite Frame Length Analysis of Frame Asynchronous Coded Slotted ALOHA

    Full text link
    We consider a frame-asynchronous coded slotted ALOHA (FA-CSA) system where users become active according to a Poisson random process. In contrast to standard frame-synchronous CSA (FS-CSA), users transmit a first replica of their message in the slot following their activation and other replicas uniformly at random in a number of subsequent slots. We derive the (approximate) density evolution that characterizes the asymptotic performance of FA-CSA when the frame length goes to infinity. We show that, if users can monitor the system before they start transmitting, a boundary-effect similar to that of spatially-coupled codes occurs, which greatly improves the decoding threshold as compared to FS-CSA. We also derive analytical approximations of the error floor (EF) in the finite frame length regime. We show that FA-CSA yields in general lower EF, better performance in the waterfall region, and lower average delay, as compared to FS-CSA.Comment: 5 pages, 6 figures. Updated notation, terminology, and typo

    Exploiting Capture Effect in Frameless ALOHA for Massive Wireless Random Access

    Full text link
    The analogies between successive interference cancellation (SIC) in slotted ALOHA framework and iterative belief-propagation erasure-decoding, established recently, enabled the application of the erasure-coding theory and tools to design random access schemes. This approach leads to throughput substantially higher than the one offered by the traditional slotted ALOHA. In the simplest setting, SIC progresses when a successful decoding occurs for a single user transmission. In this paper we consider a more general setting of a channel with capture and explore how such physical model affects the design of the coded random access protocol. Specifically, we assess the impact of capture effect in Rayleigh fading scenario on the design of SIC-enabled slotted ALOHA schemes. We provide analytical treatment of frameless ALOHA, which is a special case of SIC-enabled ALOHA scheme. We demonstrate both through analytical and simulation results that the capture effect can be very beneficial in terms of achieved throughput.Comment: Accepted for presentation at IEEE WCNC'14 Track 2 (MAC and Cross-Layer Design

    Unequal Error Protection in Coded Slotted ALOHA

    Full text link
    We analyze the performance of coded slotted ALOHA systems for a scenario where users have different error protection requirements and correspondingly can be divided into user classes. The main goal is to design the system so that the requirements for each class are satisfied. To that end, we derive analytical error floor approximations of the packet loss rate for each class in the finite frame length regime, as well as the density evolution in the asymptotic case. Based on this analysis, we propose a heuristic approach for the optimization of the degree distributions to provide the required unequal error protection. In addition, we analyze the decoding delay for users in different classes and show that better protected users experience a smaller average decoding delay

    On Frame Asynchronous Coded Slotted ALOHA: Asymptotic, Finite Length, and Delay Analysis

    Get PDF
    We consider a frame asynchronous coded slotted ALOHA (FA-CSA) system for uncoordinated multiple access, where users join the system on a slot-by-slot basis according to a Poisson random process and, in contrast to standard frame synchronous CSA (FS-CSA), users are not frame-synchronized. We analyze the performance of FA-CSA in terms of packet loss rate and delay. In particular, we derive the (approximate) density evolution that characterizes the asymptotic performance of FA-CSA when the frame length goes to infinity. We show that, if the receiver can monitor the system before anyone starts transmitting, a boundary effect similar to that of spatially-coupled codes occurs, which greatly improves the iterative decoding threshold. Furthermore, we derive tight approximations of the error floor (EF) for the finite frame length regime, based on the probability of occurrence of the most frequent stopping sets. We show that, in general, FA-CSA provides better performance in both the EF and waterfall regions as compared to FS-CSA. Moreover, FA-CSA exhibits better delay properties than FS-CSA.Comment: 13 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1604.0629

    ALOHA Random Access that Operates as a Rateless Code

    Get PDF
    Various applications of wireless Machine-to-Machine (M2M) communications have rekindled the research interest in random access protocols, suitable to support a large number of connected devices. Slotted ALOHA and its derivatives represent a simple solution for distributed random access in wireless networks. Recently, a framed version of slotted ALOHA gained renewed interest due to the incorporation of successive interference cancellation (SIC) in the scheme, which resulted in substantially higher throughputs. Based on similar principles and inspired by the rateless coding paradigm, a frameless approach for distributed random access in slotted ALOHA framework is described in this paper. The proposed approach shares an operational analogy with rateless coding, expressed both through the user access strategy and the adaptive length of the contention period, with the objective to end the contention when the instantaneous throughput is maximized. The paper presents the related analysis, providing heuristic criteria for terminating the contention period and showing that very high throughputs can be achieved, even for a low number for contending users. The demonstrated results potentially have more direct practical implications compared to the approaches for coded random access that lead to high throughputs only asymptotically.Comment: Revised version submitted to IEEE Transactions on Communication

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    Coded Slotted ALOHA with Varying Packet Loss Rate across Users

    Full text link
    The recent research has established an analogy between successive interference cancellation in slotted ALOHA framework and iterative belief-propagation erasure-decoding, which has opened the possibility to enhance random access protocols by utilizing theory and tools of erasure-correcting codes. In this paper we present a generalization of the and-or tree evaluation, adapted for the asymptotic analysis of the slotted ALOHA-based random-access protocols, for the case when the contending users experience different channel conditions, resulting in packet loss probability that varies across users. We apply the analysis to the example of frameless ALOHA, where users contend on a slot basis. We present results regarding the optimal access probabilities and contention period lengths, such that the throughput and probability of user resolution are maximized.Comment: 4 pages, submitted to GlobalSIP 201

    Broadcast Coded Slotted ALOHA: A Finite Frame Length Analysis

    Full text link
    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B-CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B-CSA is able to support a much larger number of users than CSMA with the same reliability.Comment: arXiv admin note: text overlap with arXiv:1501.0338
    • …
    corecore