14 research outputs found

    Distributed Big-Data Optimization via Block-Iterative Convexification and Averaging

    Full text link
    In this paper, we study distributed big-data nonconvex optimization in multi-agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    Convergence rate analysis of a subgradient averaging algorithm for distributed optimisation with different constraint sets

    Get PDF
    We consider a multi-agent setting with agents exchanging information over a network to solve a convex constrained optimisation problem in a distributed manner. We analyse a new algorithm based on local subgradient exchange under undirected time-varying communication. First, we prove asymptotic convergence of the iterates to a minimum of the given optimisation problem for time-varying step-sizes of the form c(k) = rac{eta }{{k + 1}}, for some \u3b7 > 0. We then restrict attention to step-size choices c(k) = rac{eta }{{sqrt {k + 1} }},eta > 0, and establish a convergence of mathcal{O}left( {rac{{ln (k)}}{{sqrt k }}} ight) in objective value. Our algorithm extends currently available distributed subgradient/proximal methods by: (i) accounting for different constraint sets at each node, and (ii) enhancing the convergence speed thanks to a subgradient averaging step performed by the agents. A numerical example demonstrates the efficacy of the proposed algorithm

    Uncertain Multi-Agent Systems with Distributed Constrained Optimization Missions and Event-Triggered Communications: Application to Resource Allocation

    Full text link
    This paper deals with solving distributed optimization problems with equality constraints by a class of uncertain nonlinear heterogeneous dynamic multi-agent systems. It is assumed that each agent with an uncertain dynamic model has limited information about the main problem and limited access to the information of the state variables of the other agents. A distributed algorithm that guarantees cooperative solving of the constrained optimization problem by the agents is proposed. Via this algorithm, the agents do not need to continuously broadcast their data. It is shown that the proposed algorithm can be useful in solving resource allocation problems

    Randomized Constraints Consensus for Distributed Robust Mixed-Integer Programming

    Full text link
    In this paper, we consider a network of processors aiming at cooperatively solving mixed-integer convex programs subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under asynchronous, unreliable and directed communication. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: (i) a verification in which they check---in a randomized fashion---the robust feasibility of a candidate optimal point, and (ii) an optimization step in which they exchange their candidate basis (the minimal set of constraints defining a solution) with neighbors and locally solve an optimization problem. As main result, we show that processors can stop the algorithm after a finite number of communication rounds (either because verification has been successful for a sufficient number of rounds or because a given threshold has been reached), so that candidate optimal solutions are consensual. The common solution is proven to be---with high confidence---feasible and hence optimal for the entire set of uncertainty except a subset having an arbitrary small probability measure. We show the effectiveness of the proposed distributed algorithm using two examples: a random, uncertain mixed-integer linear program and a distributed localization in wireless sensor networks. The distributed algorithm is implemented on a multi-core platform in which the nodes communicate asynchronously.Comment: Submitted for publication. arXiv admin note: text overlap with arXiv:1706.0048

    Tracking-ADMM for Distributed Constraint-Coupled Optimization

    Get PDF
    We consider constraint-coupled optimization problems in which agents of a network aim to cooperatively minimize the sum of local objective functions subject to individual constraints and a common linear coupling constraint. We propose a novel optimization algorithm that embeds a dynamic average consensus protocol in the parallel Alternating Direction Method of Multipliers (ADMM) to design a fully distributed scheme for the considered set-up. The dynamic average mechanism allows agents to track the time-varying coupling constraint violation (at the current solution estimates). The tracked version of the constraint violation is then used to update local dual variables in a consensus-based scheme mimicking a parallel ADMM step. Under convexity, we prove that all limit points of the agents' primal solution estimates form an optimal solution of the constraint-coupled (primal) problem. The result is proved by means of a Lyapunov-based analysis simultaneously showing consensus of the dual estimates to a dual optimal solution, convergence of the tracking scheme and asymptotic optimality of primal iterates. A numerical study on optimal charging schedule of plug-in electric vehicles corroborates the theoretical results.Comment: 14 pages, 2 figures, submitted to Automatic
    corecore