445 research outputs found

    Resource Allocation for Device-to-Device Communications Underlaying Heterogeneous Cellular Networks Using Coalitional Games

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mmWave) communications included are emerging as a promising candidate for the fifth generation mobile network. With highly directional antenna arrays, mmWave links are able to provide several-Gbps transmission rate. However, mmWave links are easily blocked without line of sight. On the other hand, D2D communications have been proposed to support many content based applications, and need to share resources with users in HCNs to improve spectral reuse and enhance system capacity. Consequently, an efficient resource allocation scheme for D2D pairs among both mmWave and the cellular carrier band is needed. In this paper, we first formulate the problem of the resource allocation among mmWave and the cellular band for multiple D2D pairs from the view point of game theory. Then, with the characteristics of cellular and mmWave communications considered, we propose a coalition formation game to maximize the system sum rate in statistical average sense. We also theoretically prove that our proposed game converges to a Nash-stable equilibrium and further reaches the near-optimal solution with fast convergence rate. Through extensive simulations under various system parameters, we demonstrate the superior performance of our scheme in terms of the system sum rate compared with several other practical schemes.Comment: 13 pages, 12 figure

    Resource Allocation for Device-to-Device Communications in Multi-Cell Multi-Band Heterogeneous Cellular Networks

    Full text link
    Heterogeneous cellular networks (HCNs) with millimeter wave (mm-wave) communications are considered as a promising technology for the fifth generation mobile networks. Mm-wave has the potential to provide multiple gigabit data rate due to the broad spectrum. Unfortunately, additional free space path loss is also caused by the high carrier frequency. On the other hand, mm-wave signals are sensitive to obstacles and more vulnerable to blocking effects. To address this issue, highly directional narrow beams are utilized in mm-wave networks. Additionally, device-to-device (D2D) users make full use of their proximity and share uplink spectrum resources in HCNs to increase the spectrum efficiency and network capacity. Towards the caused complex interferences, the combination of D2D-enabled HCNs with small cells densely deployed and mm-wave communications poses a big challenge to the resource allocation problems. In this paper, we formulate the optimization problem of D2D communication spectrum resource allocation among multiple micro-wave bands and multiple mm-wave bands in HCNs. Then, considering the totally different propagation conditions on the two bands, a heuristic algorithm is proposed to maximize the system transmission rate and approximate the solutions with sufficient accuracies. Compared with other practical schemes, we carry out extensive simulations with different system parameters, and demonstrate the superior performance of the proposed scheme. In addition, the optimality and complexity are simulated to further verify effectiveness and efficiency.Comment: 13 pages, 11 figures, IEEE Transactions on Vehicular Technolog

    Resource and power management in next generation networks

    Get PDF
    The limits of today’s cellular communication systems are constantly being tested by the exponential increase in mobile data traffic, a trend which is poised to continue well into the next decade. Densification of cellular networks, by overlaying smaller cells, i.e., micro, pico and femtocells, over the traditional macrocell, is seen as an inevitable step in enabling future networks to support the expected increases in data rate demand. Next generation networks will most certainly be more heterogeneous as services will be offered via various types of points of access (PoAs). Indeed, besides the traditional macro base station, it is expected that users will also be able to access the network through a wide range of other PoAs: WiFi access points, remote radio-heads (RRHs), small cell (i.e., micro, pico and femto) base stations or even other users, when device-to-device (D2D) communications are supported, creating thus a multi-tiered network architecture. This approach is expected to enhance the capacity of current cellular networks, while patching up potential coverage gaps. However, since available radio resources will be fully shared, the inter-cell interference as well as the interference between the different tiers will pose a significant challenge. To avoid severe degradation of network performance, properly managing the interference is essential. In particular, techniques that mitigate interference such Inter Cell Interference Coordination (ICIC) and enhanced ICIC (eICIC) have been proposed in the literature to address the issue. In this thesis, we argue that interference may be also addressed during radio resource scheduling tasks, by enabling the network to make interference-aware resource allocation decisions. Carrier aggregation technology, which allows the simultaneous use of several component carriers, on the other hand, targets the lack of sufficiently large portions of frequency spectrum; a problem that severely limits the capacity of wireless networks. The aggregated carriers may, in general, belong to different frequency bands, and have different bandwidths, thus they also may have very different signal propagation characteristics. Integration of carrier aggregation in the network introduces additional tasks and further complicates interference management, but also opens up a range of possibilities for improving spectrum efficiency in addition to enhancing capacity, which we aim to exploit. In this thesis, we first look at the resource allocation in problem in dense multitiered networks with support for advanced features such as carrier aggregation and device-to-device communications. For two-tiered networks with D2D support, we propose a centralised, near optimal algorithm, based on dynamic programming principles, that allows a central scheduler to make interference and traffic-aware scheduling decisions, while taking into consideration the short-lived nature of D2D links. As the complexity of the central scheduler increases exponentially with the number of component carriers, we further propose a distributed heuristic algorithm to tackle the resource allocation problem in carrier aggregation enabled dense networks. We show that the solutions we propose perform significantly better than standard solutions adopted in cellular networks such as eICIC coupled with Proportional Fair scheduling, in several key metrics such as user throughput, timely delivery of content and spectrum and energy efficiency, while ensuring fairness for backward compatible devices. Next, we investigate the potentiality to enhance network performance by enabling the different nodes of the network to reduce and dynamically adjust the transmit power of the different carriers to mitigate interference. Considering that the different carriers may have different coverage areas, we propose to leverage this diversity, to obtain high-performing network configurations. Thus, we model the problem of carrier downlink transmit power setting, as a competitive game between teams of PoAs, which enables us to derive distributed dynamic power setting algorithms. Using these algorithms we reach stable configurations in the network, known as Nash equilibria, which we show perform significantly better than fixed power strategies coupled with eICIC

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen
    • …
    corecore