218 research outputs found

    Trading Communication for Computation in Byzantine-Resilient Gradient Coding

    Full text link
    We consider gradient coding in the presence of an adversary, controlling so-called malicious workers trying to corrupt the computations. Previous works propose the use of MDS codes to treat the inputs of the malicious workers as errors and correct them using the error-correction properties of the code. This comes at the expense of increasing the replication, i.e., the number of workers each partial gradient is computed by. In this work, we reduce replication by proposing a method that detects the erroneous inputs from the malicious workers, hence transforming them into erasures. For ss malicious workers, our solution can reduce the replication to s+1s+1 instead of 2s+12s+1 for each partial gradient at the expense of only ss additional computations at the main node and additional rounds of light communication between the main node and the workers. We give fundamental limits of the general framework for fractional repetition data allocation. Our scheme is optimal in terms of replication and local computation but incurs a communication cost that is asymptotically, in the size of the dataset, a multiplicative factor away from the derived bound

    The Hidden Vulnerability of Distributed Learning in Byzantium

    Get PDF
    While machine learning is going through an era of celebrated success, concerns have been raised about the vulnerability of its backbone: stochastic gradient descent (SGD). Recent approaches have been proposed to ensure the robustness of distributed SGD against adversarial (Byzantine) workers sending poisoned gradients during the training phase. Some of these approaches have been proven Byzantine-resilient: they ensure the convergence of SGD despite the presence of a minority of adversarial workers. We show in this paper that convergence is not enough. In high dimension d≫1d \gg 1, an adver\-sary can build on the loss function's non-convexity to make SGD converge to ineffective models. More precisely, we bring to light that existing Byzantine-resilient schemes leave a margin of poisoning of Ω(f(d))\Omega\left(f(d)\right), where f(d)f(d) increases at least like d \sqrt{d~}. Based on this leeway, we build a simple attack, and experimentally show its strong to utmost effectivity on CIFAR-10 and MNIST. We introduce Bulyan, and prove it significantly reduces the attackers leeway to a narrow O(1d )O( \frac{1}{\sqrt{d~}}) bound. We empirically show that Bulyan does not suffer the fragility of existing aggregation rules and, at a reasonable cost in terms of required batch size, achieves convergence as if only non-Byzantine gradients had been used to update the model.Comment: Accepted to ICML 2018 as a long tal

    Making Byzantine Decentralized Learning Efficient

    Full text link
    Decentralized-SGD (D-SGD) distributes heavy learning tasks across multiple machines (a.k.a., {\em nodes}), effectively dividing the workload per node by the size of the system. However, a handful of \emph{Byzantine} (i.e., misbehaving) nodes can jeopardize the entire learning procedure. This vulnerability is further amplified when the system is \emph{asynchronous}. Although approaches that confer Byzantine resilience to D-SGD have been proposed, these significantly impact the efficiency of the process to the point of even negating the benefit of decentralization. This naturally raises the question: \emph{can decentralized learning simultaneously enjoy Byzantine resilience and reduced workload per node?} We answer positively by proposing \newalgorithm{} that ensures Byzantine resilience without losing the computational efficiency of D-SGD. Essentially, \newalgorithm{} weakens the impact of Byzantine nodes by reducing the variance in local updates using \emph{Polyak's momentum}. Then, by establishing coordination between nodes via {\em signed echo broadcast} and a {\em nearest-neighbor averaging} scheme, we effectively tolerate Byzantine nodes whilst distributing the overhead amongst the non-Byzantine nodes. To demonstrate the correctness of our algorithm, we introduce and analyze a novel {\em Lyapunov function} that accounts for the {\em non-Markovian model drift} arising from the use of momentum. We also demonstrate the efficiency of \newalgorithm{} through experiments on several image classification tasks.Comment: 63 pages,5 figure

    On the sample complexity of adversarial multi-source PAC learning

    Get PDF
    We study the problem of learning from multiple untrusted data sources, a scenario of increasing practical relevance given the recent emergence of crowdsourcing and collaborative learning paradigms. Specifically, we analyze the situation in which a learning system obtains datasets from multiple sources, some of which might be biased or even adversarially perturbed. It is known that in the single-source case, an adversary with the power to corrupt a fixed fraction of the training data can prevent PAC-learnability, that is, even in the limit of infinitely much training data, no learning system can approach the optimal test error. In this work we show that, surprisingly, the same is not true in the multi-source setting, where the adversary can arbitrarily corrupt a fixed fraction of the data sources. Our main results are a generalization bound that provides finite-sample guarantees for this learning setting, as well as corresponding lower bounds. Besides establishing PAC-learnability our results also show that in a cooperative learning setting sharing data with other parties has provable benefits, even if some participants are malicious

    SPIRT: A Fault-Tolerant and Reliable Peer-to-Peer Serverless ML Training Architecture

    Full text link
    The advent of serverless computing has ushered in notable advancements in distributed machine learning, particularly within parameter server-based architectures. Yet, the integration of serverless features within peer-to-peer (P2P) distributed networks remains largely uncharted. In this paper, we introduce SPIRT, a fault-tolerant, reliable, and secure serverless P2P ML training architecture. designed to bridge this existing gap. Capitalizing on the inherent robustness and reliability innate to P2P systems, SPIRT employs RedisAI for in-database operations, leading to an 82\% reduction in the time required for model updates and gradient averaging across a variety of models and batch sizes. This architecture showcases resilience against peer failures and adeptly manages the integration of new peers, thereby highlighting its fault-tolerant characteristics and scalability. Furthermore, SPIRT ensures secure communication between peers, enhancing the reliability of distributed machine learning tasks. Even in the face of Byzantine attacks, the system's robust aggregation algorithms maintain high levels of accuracy. These findings illuminate the promising potential of serverless architectures in P2P distributed machine learning, offering a significant stride towards the development of more efficient, scalable, and resilient applications
    • …
    corecore