28,183 research outputs found

    Distributed Algorithmic Foundations of Dynamic Networks

    Get PDF

    Fourteenth Biennial Status Report: MƤrz 2017 - February 2019

    No full text

    Active Virtual Network Management Prediction: Complexity as a Framework for Prediction, Optimization, and Assurance

    Full text link
    Research into active networking has provided the incentive to re-visit what has traditionally been classified as distinct properties and characteristics of information transfer such as protocol versus service; at a more fundamental level this paper considers the blending of computation and communication by means of complexity. The specific service examined in this paper is network self-prediction enabled by Active Virtual Network Management Prediction. Computation/communication is analyzed via Kolmogorov Complexity. The result is a mechanism to understand and improve the performance of active networking and Active Virtual Network Management Prediction in particular. The Active Virtual Network Management Prediction mechanism allows information, in various states of algorithmic and static form, to be transported in the service of prediction for network management. The results are generally applicable to algorithmic transmission of information. Kolmogorov Complexity is used and experimentally validated as a theory describing the relationship among algorithmic compression, complexity, and prediction accuracy within an active network. Finally, the paper concludes with a complexity-based framework for Information Assurance that attempts to take a holistic view of vulnerability analysis

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle
    • ā€¦
    corecore