6,855 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Non-Cooperative Scheduling of Multiple Bag-of-Task Applications

    Get PDF
    Multiple applications that execute concurrently on heterogeneous platforms compete for CPU and network resources. In this paper we analyze the behavior of KK non-cooperative schedulers using the optimal strategy that maximize their efficiency while fairness is ensured at a system level ignoring applications characteristics. We limit our study to simple single-level master-worker platforms and to the case where each scheduler is in charge of a single application consisting of a large number of independent tasks. The tasks of a given application all have the same computation and communication requirements, but these requirements can vary from one application to another. In this context, we assume that each scheduler aims at maximizing its throughput. We give closed-form formula of the equilibrium reached by such a system and study its performance. We characterize the situations where this Nash equilibrium is optimal (in the Pareto sense) and show that even though no catastrophic situation (Braess-like paradox) can occur, such an equilibrium can be arbitrarily bad for any classical performance measure
    • …
    corecore