4 research outputs found

    Automatic Distractor Generation for Multiple Choice Questions in Standard Tests

    Full text link
    To assess the knowledge proficiency of a learner, multiple choice question is an efficient and widespread form in standard tests. However, the composition of the multiple choice question, especially the construction of distractors is quite challenging. The distractors are required to both incorrect and plausible enough to confuse the learners who did not master the knowledge. Currently, the distractors are generated by domain experts which are both expensive and time-consuming. This urges the emergence of automatic distractor generation, which can benefit various standard tests in a wide range of domains. In this paper, we propose a question and answer guided distractor generation (EDGE) framework to automate distractor generation. EDGE consists of three major modules: (1) the Reforming Question Module and the Reforming Passage Module apply gate layers to guarantee the inherent incorrectness of the generated distractors; (2) the Distractor Generator Module applies attention mechanism to control the level of plausibility. Experimental results on a large-scale public dataset demonstrate that our model significantly outperforms existing models and achieves a new state-of-the-art.Comment: accepted by COLING202

    Knowledge-Driven Distractor Generation for Cloze-style Multiple Choice Questions

    Full text link
    In this paper, we propose a novel configurable framework to automatically generate distractive choices for open-domain cloze-style multiple-choice questions, which incorporates a general-purpose knowledge base to effectively create a small distractor candidate set, and a feature-rich learning-to-rank model to select distractors that are both plausible and reliable. Experimental results on datasets across four domains show that our framework yields distractors that are more plausible and reliable than previous methods. This dataset can also be used as a benchmark for distractor generation in the future.Comment: To appear at AAAI 202

    Co-Attention Hierarchical Network: Generating Coherent Long Distractors for Reading Comprehension

    Full text link
    In reading comprehension, generating sentence-level distractors is a significant task, which requires a deep understanding of the article and question. The traditional entity-centered methods can only generate word-level or phrase-level distractors. Although recently proposed neural-based methods like sequence-to-sequence (Seq2Seq) model show great potential in generating creative text, the previous neural methods for distractor generation ignore two important aspects. First, they didn't model the interactions between the article and question, making the generated distractors tend to be too general or not relevant to question context. Second, they didn't emphasize the relationship between the distractor and article, making the generated distractors not semantically relevant to the article and thus fail to form a set of meaningful options. To solve the first problem, we propose a co-attention enhanced hierarchical architecture to better capture the interactions between the article and question, thus guide the decoder to generate more coherent distractors. To alleviate the second problem, we add an additional semantic similarity loss to push the generated distractors more relevant to the article. Experimental results show that our model outperforms several strong baselines on automatic metrics, achieving state-of-the-art performance. Further human evaluation indicates that our generated distractors are more coherent and more educative compared with those distractors generated by baselines.Comment: 8 pages, 3 figures. Accepted by AAAI202
    corecore