14,441 research outputs found

    A study on the correlation of nucleotide skews and the positioning of the origin of replication: different modes of replication in bacterial species

    Get PDF
    Deviations from Chargaff's 2nd parity rule, according to which A∼T and G∼C in single stranded DNA, have been associated with replication as well as with transcription in prokaryotes. Based on observations regarding mainly the transcription-replication co-linearity in a large number of prokaryotic species, we formulate the hypothesis that the replication procedure may follow different modes between genomes throughout which the skews clearly follow different patterns. We draw the conclusion that multiple functional sites of origin of replication may exist in the genomes of most archaea and in some exceptional cases of eubacteria, while in the majority of eubacteria, replication occurs through a single fixed origin

    Strand-specific Composition Bias in Bacterial Genomes

    Get PDF

    Core promoter: A critical region where the hepatitis B virus makes decisions

    Get PDF
    The core promoter (CP) of the viral genome plays an important role for hepatitis B virus (HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic (pg) RNAs. The CP consists of the upper regulatory region and the basal core promoter (BCP). The CP overlaps with the 3’-end of the X open reading frames and the 5’-end of the precore region, and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation, when variations appear, they may contribute to the persistence of HBV within the host, leading to chronic infection and cirrhosis, and eventually, hepatocellular carcinoma. Among CP sequence variations, those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen, and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.Fil: Quarleri, Jorge Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentin

    Pervasive lesion segregation shapes cancer genome evolution

    Get PDF
    Cancers arise through the acquisition of oncogenic mutations and grow through clonal expansion. Here we reveal that most mutagenic DNA lesions are not resolved as mutations within a single cell-cycle. Instead, DNA lesions segregate unrepaired into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterise this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multi-allelic and combinatorial genetic diversity. The phasing of lesions enables the accurate measurement of strand biased repair processes, quantification of oncogenic selection, and fine mapping of sister chromatid exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.This work was supported by: Cancer Research UK (20412, 22398), the European Research Council (615584, 682398), the Wellcome Trust (WT108749/Z/15/Z, WT106563/Z/14/A, WT202878/B/16/Z), the European Molecular Biology Laboratory, the MRC Human Genetics Unit core funding programme grants (MC_UU_00007/11, MC_UU_00007/16), and the ERDF/Spanish Ministry of Science, Innovation and Universities-Spanish State Research Agency/DamReMap Project (RTI2018-094095-B-I00)
    • …
    corecore