3,280 research outputs found

    Degree-doubling graph families

    Full text link
    Let G be a family of n-vertex graphs of uniform degree 2 with the property that the union of any two member graphs has degree four. We determine the leading term in the asymptotics of the largest cardinality of such a family. Several analogous problems are discussed.Comment: 9 page

    On the strong partition dimension of graphs

    Full text link
    We present a different way to obtain generators of metric spaces having the property that the ``position'' of every element of the space is uniquely determined by the distances from the elements of the generators. Specifically we introduce a generator based on a partition of the metric space into sets of elements. The sets of the partition will work as the new elements which will uniquely determine the position of each single element of the space. A set WW of vertices of a connected graph GG strongly resolves two different vertices x,yWx,y\notin W if either dG(x,W)=dG(x,y)+dG(y,W)d_G(x,W)=d_G(x,y)+d_G(y,W) or dG(y,W)=dG(y,x)+dG(x,W)d_G(y,W)=d_G(y,x)+d_G(x,W), where dG(x,W)=min{d(x,w)  :  wW}d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}. An ordered vertex partition Π={U1,U2,...,Uk}\Pi=\left\{U_1,U_2,...,U_k\right\} of a graph GG is a strong resolving partition for GG if every two different vertices of GG belonging to the same set of the partition are strongly resolved by some set of Π\Pi. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties. We give some realizability results for this parameter and we also obtain tight bounds and closed formulae for the strong metric dimension of several graphs.Comment: 16 page

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection
    corecore