464 research outputs found

    Extensions of Fractional Precolorings show Discontinuous Behavior

    Get PDF
    We study the following problem: given a real number k and integer d, what is the smallest epsilon such that any fractional (k+epsilon)-precoloring of vertices at pairwise distances at least d of a fractionally k-colorable graph can be extended to a fractional (k+epsilon)-coloring of the whole graph? The exact values of epsilon were known for k=2 and k\ge3 and any d. We determine the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6, and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6. Surprisingly, epsilon viewed as a function of k is discontinuous for all those values of d

    The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs

    Full text link
    We study the problem of transforming one list (vertex) coloring of a graph into another list coloring by changing only one vertex color assignment at a time, while at all times maintaining a list coloring, given a list of allowed colors for each vertex. This problem is known to be PSPACE-complete for bipartite planar graphs. In this paper, we first show that the problem remains PSPACE-complete even for bipartite series-parallel graphs, which form a proper subclass of bipartite planar graphs. We note that our reduction indeed shows the PSPACE-completeness for graphs with pathwidth two, and it can be extended for threshold graphs. In contrast, we give a polynomial-time algorithm to solve the problem for graphs with pathwidth one. Thus, this paper gives precise analyses of the problem with respect to pathwidth

    A general framework for coloring problems: old results, new results, and open problems

    Get PDF
    In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants

    Selected Problems in Graph Coloring

    Get PDF
    The Borodin–Kostochka Conjecture states that for a graph G, if ∆(G) ≥ 9 and ω(G) ≤ ∆(G) − 1, then χ(G) ≤ ∆(G) − 1. We prove the Borodin–Kostochka Conjecture for (P5, gem)-free graphs, i.e., graphs with no induced P5 and no induced K1 ∨P4. ForagraphGandt,k∈Z+ at-tonek-coloringofGisafunctionf:V(G)→ [k] such that |f(v)∩f(w)| \u3c d(v,w) for all distinct v,w ∈ V(G). The t-tone t chromatic number of G, denoted τt(G), is the minimum k such that G is t-tone k- colorable. For small values of t, we prove sharp or nearly sharp upper bounds on the t-tone chromatic number of various classes of sparse graphs. In particular, we determine τ2(G) exactly when mad(G) \u3c 12/5 and also determine τ2(G), up to a small additive constant, when G is outerplanar. Finally, we determine τt(Cn) exactly when t ∈ {3, 4, 5}
    corecore