15,498 research outputs found

    Estimating snow cover from publicly available images

    Get PDF
    In this paper we study the problem of estimating snow cover in mountainous regions, that is, the spatial extent of the earth surface covered by snow. We argue that publicly available visual content, in the form of user generated photographs and image feeds from outdoor webcams, can both be leveraged as additional measurement sources, complementing existing ground, satellite and airborne sensor data. To this end, we describe two content acquisition and processing pipelines that are tailored to such sources, addressing the specific challenges posed by each of them, e.g., identifying the mountain peaks, filtering out images taken in bad weather conditions, handling varying illumination conditions. The final outcome is summarized in a snow cover index, which indicates for a specific mountain and day of the year, the fraction of visible area covered by snow, possibly at different elevations. We created a manually labelled dataset to assess the accuracy of the image snow covered area estimation, achieving 90.0% precision at 91.1% recall. In addition, we show that seasonal trends related to air temperature are captured by the snow cover index.Comment: submitted to IEEE Transactions on Multimedi

    Multi-Source Spatial Entity Linkage

    Get PDF
    Besides the traditional cartographic data sources, spatial information can also be derived from location-based sources. However, even though different location-based sources refer to the same physical world, each one has only partial coverage of the spatial entities, describe them with different attributes, and sometimes provide contradicting information. Hence, we introduce the spatial entity linkage problem, which finds which pairs of spatial entities belong to the same physical spatial entity. Our proposed solution (QuadSky) starts with a time-efficient spatial blocking technique (QuadFlex), compares pairwise the spatial entities in the same block, ranks the pairs using Pareto optimality with the SkyRank algorithm, and finally, classifies the pairs with our novel SkyEx-* family of algorithms that yield 0.85 precision and 0.85 recall for a manually labeled dataset of 1,500 pairs and 0.87 precision and 0.6 recall for a semi-manually labeled dataset of 777,452 pairs. Moreover, we provide a theoretical guarantee and formalize the SkyEx-FES algorithm that explores only 27% of the skylines without any loss in F-measure. Furthermore, our fully unsupervised algorithm SkyEx-D approximates the optimal result with an F-measure loss of just 0.01. Finally, QuadSky provides the best trade-off between precision and recall, and the best F-measure compared to the existing baselines and clustering techniques, and approximates the results of supervised learning solutions
    • …
    corecore