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ABSTRACT
Besides the traditional cartographic data sources, spatial informa-
tion can also be derived from location-based sources. Location-based
sources offer rich spatial information describing the semantics of
locations. However, even though different location-based sources
refer to the same physical world, each one has only partial coverage
of the spatial entities of interest, describe them with different at-
tributes, and sometimes provide contradicting information. Hence,
the problem of finding which pairs of spatial entities belong to the
same physical spatial entity demands specific attention. We pro-
pose a solution (QuadSky) to the problem of spatial entity linkage
across diverse location-based sources. QuadSky starts with a spatial
blocking technique (QuadFlex) that inherits the concept and the
complexity from the quadtree algorithm but improves the split-
ting technique not to separate nearby points. After comparing the
spatial entities of the same block, we propose a novel algorithm,
referred to as SkyEx that separates the pairs considered as a match
(positive class) from the rest (negative class) by using Pareto opti-
mality. SkyEx does not require weights on the attributes, scoring
function, or a training set. QuadSky achieves 0.85 precision and 0.85
recall for a manually labeled dataset of 1,500 pairs and 0.87 precision
and 0.6 recall for a semi-manually labeled dataset of 777,452 pairs.
Moreover, QuadSky provides the best trade-off between precision
and recall and consequently, the best F-measure compared to the
existing baselines.

CCS CONCEPTS
• Information systems → Entity resolution; Geographic in-
formation systems.

1 INTRODUCTION
Web data and social networks are growing in terms of information
volume and heterogeneity. Almost all online sources offer the pos-
sibility to introduce locations (geo-tagged entities accompanied by
semantic details). A specific type of sources is location-based sources,
whose primary focus is locations. In contrast to cartographic data
sources, locations in location-based sources have a hybrid form
that stands between a spatial object and an entity. We refer to them
as spatial entities since they are spatially located but also identified
by several other attributes such as the name of the location, the ad-
dress, the phone, keywords, etc. Given that spatial entities provide
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richer semantics, several systems that rely on spatial information
such as geo-recommender systems, selecting influential locations,
search engines that use geo-preferences, etc. could improve fur-
ther their results by using spatial entities instead of spatial objects.
Hence, it is of interest to collect and integrate spatial entities from
location-based sources.

While a spatial object is identified only by the coordinates, this
is not the case for spatial entities. Different spatial entities might
co-exist in the same coordinates (shops in a shopping mall), or the
same entity might be located in different but nearby coordinates
across different sources. The identity of a spatial entity is the com-
bination of several attributes. Nevertheless, the identity of a spatial
entity is sometimes difficult to infer due to the inconsistencies in the
sources; each location-based source contains different attributes;
some attributes might be missing and even contradicting. For ex-
ample, the spatial entity "Lygten" is located in (57.436 10.534) and
associated to keywords such as "coffee", "tea", and "cocoa and spices"
in source A. In the meantime, source B contains the spatial entity
named "Restaurant Lygten" in (57.435 10.533), described by the
keyword "restaurant". We need a technique that can automatically
decide whether these two spatial entities are the same real-world
entity. The problem of finding which spatial entities belong to the
same physical entity is referred to as spatial entity linkage or spatial
entity resolution. According to [5], entity linkage establishes a link
between spatial entities, whereas entity resolution goes further
by merging related entities into one merged representative entity.
Since we do not perform the latter, we use the term entity linkage.

There are several works that apply entity linkage in various fields
[9, 10, 12, 12, 13, 15, 20, 20, 22, 31, 35] but little regarding spatial
entities [4, 16, 21]. In general, the entities studied in the current
entity linkage paper refer to people; thus, the methodologies and
the models are based on the similarities that two records of the
same individual would reveal. Moreover, these works discard the
spatial character of spatial entities. As for the works in spatial
entity integration [4, 16, 21], their main contribution is a tool rather
than an algorithm. What is more, the methods propose arbitrarily
attribute weights and score functions without experimentation nor
evaluation. To sum up, with the growing amount of information from
location-based sources and the necessity for richer spatial information,
a method to link spatial entities across different sources is needed.

In this paper, we address the problem of spatial entity linkage
across different location-based sources. First, we propose a method
that uses the geo-coordinates to arrange the spatial entities into
blocks. Then, we pairwise compare the attributes of the spatial en-
tities. Finally, we introduce a novel technique for deciding whether
the pairs of compared entities belong to the same physical entity.
Our contributions are:

(1) We introduce QuadSky, a technique for linking spatial enti-
ties and we evaluate it on real-world data from four location-
based sources.

https://doi.org/10.1145/3340964.3340979


SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

(2) We propose an algorithm called QuadFlex that organizes
the spatial entities into blocks based on their spatial prox-
imity. QuadFlex inherits the concept and the complexity of
quadtrees but avoids assigning nearby points in different
blocks.

(3) To decide whether a of pair spatial entities refers to the
same physical entity or not, we propose a flexible technique
(SkyEx) that is based on the concept of Pareto optimality and
needs no weights, no scoring functions, nor a training set.

The remainder of the paper is structured as follows: first, we
describe and compare to state of the art in Section 2; then, we detail
our proposed algorithm in Section 3; later, we provide experiments
regarding the performance of our proposed solution in Section 4
and finally, we conclude in Section 5.

2 RELATEDWORK
The spatial entity linkage problem has not been explicitly addressed,
but there are several works on entity resolution and also on spatial
data integration. The general data integration problem covers three
aspects: schema matching, entity resolution and data fusion [8, 12].
In general, there are various works that tackle the entity resolution
problem but few that deal with spatial entities.

Entity resolution. The entity resolution problem has been re-
ferred in the literature with multiple terms including deduplica-
tion, entity linkage, and entity matching. Entity resolution has been
used in various fields such as matching profiles in social networks
[31], bioinformatics data [35], biomedical data [7], publication data
[12, 20], genealogical data [10], product data [12, 20], etc. The at-
tributes of the entities are compared, and a similarity value is as-
signed. The decision of whether to link two entities or not is usually
based on a scoring function. However, finding an appropriate sim-
ilarity function that combines the similarities of attributes and
decides on whether to link or not the entities is often difficult.
Several works use a training set to learn a classifier [9, 13, 25], oth-
ers base the decision on a threshold derived through experiments
[22, 26]. Other approaches that deal with uncertainty are described
in the survey of Magnani and Montesi [19], including probabilistic,
rule-based probabilistic, fuzzy, and preference-based relationships
between records as well as aggregation of multi-matches. Finally,
the decision on whether to link to entities or not can also be based
on the feedback of an oracle [12, 20] or of a user [20].

Spatial data integration. There are several works on integrat-
ing geographical data; some integrate purely spatial objects, some
spatial entities. Spatial objects differ from spatial entities mainly
because a spatial object is fully determined by the coordinates and
the spatial shape whereas a spatial entity, in addition to being geo-
located, has a well-defined identity (name, phone, opening hours,
categories). The works on spatial object integration aim to create a
unified spatial representation of the spatial objects that come from
single/multiple sources. The solutions in [1, 2, 32, 33] are purely
spatial and discuss the integration of spatial objects originating
from sensors and radars to have a better representation of the sur-
face in 2D or even in 3D. Road network integration is tackled by
Schafers at al [29] where rules are used to detect matching and
non-matching roads. The matching is performed on the similarity

of the roads in terms of the length, angles, shape, as well as the
name of the street if available. Nonetheless, this approach is based
on roads only and cannot apply to the linking of spatial entities.

Entity resolution of spatial entities has been discussed in [4, 16,
21, 30]. The work in [30] is a bridge between the works in spatial
data integration and spatial entity linkage because the entities have
names, coordinates, and types but similarly to spatial objects, they
refer to landscapes (rivers, deserts, mountains, etc.). The method
used in [30] is supervised and requires labeled data. Moreover,
even the similarity of the attribute "type" is learned through a
training set. Regarding [4, 16, 21], the main contribution of these
works relies on designing a spatial entity matching tool rather than
an integration algorithm. The authors of [21] provide a general
matching technique for spatial entity matching. Spatial entities
within a radius are compared with each other, and the value of the
radius is fixed depending on the type of spatial entity. For example,
the radius is 50 m for restaurants and hotels, but 500 m for parks. All
attributes (except coordinates) are compared using the Levenshtein
similarity. Since the name, the geodata and the type of the entity are
always present, they carry two-thirds of the weight in the scoring
function whereas the weights of the website, the address and the
phone number are tuned to one-third. The prototype of the spatial
entity matching in [4] relies on a technique that arbitrarily uses
an average of the similarity scores of all textual attributes without
providing a discussing on this choice. Similarly to [4, 16], the main
contribution of the work in [21] is designing a tool for spatial entity
integration. The underlying algorithm considers spatial entities that
are 5 m apart from each other and compares the name of the entities
syntactically and the metadata related to an entity semantically.
Finally, the decision is taken using the belief theory [27]. The works
in [4, 16, 21] lack an evaluation of the algorithms.

Summary. On the one hand, the general entity resolution ap-
proaches propose interesting solutions, but they do not consider
the spatial character of a spatial entity. They do not deal with
geographic coordinates and are designed to match entities that
represent individuals (profiles in social networks, authors and pub-
lications, medical records, genealogical connections, etc.) or even
linking species in nature. The proposed solutions for the former
[entity resolution in individuals], either supervised or based on an
experimental threshold, are learned on human entity datasets. One
can not merely assume the resemblance of behaviors in a human
entity dataset to a spatial entity one. The solutions in the latter
[species in nature] are based on domain-specific algorithms that
have little to no applicability in other fields. On the other hand, there
is little specific work in spatial entities [4, 16, 21], mostly focusing
on a tool for spatial data integration rather than on the algorithm.
In all these works, the scoring function is chosen arbitrarily and no
evaluation provided.

3 SPATIAL ENTITY LINKAGE
In this section, we introduce definitions, the problem of spatial
entity linkage, and our proposed solution.

3.1 Problem Definition
The basic concept used in this work is a spatial entity, used for
locations, places, businesses, etc. Spatial entities originate from



Multi-Source Spatial Entity Linkage SSTD ’19, August 19–21, 2019, Vienna, Austria

location-based sources such as directories with location informa-
tion (yellow pages, Google Places, etc.) and location-based social
networks (Foursquare, Gowalla, etc.).

Definition 3.1. A spatial entity s is an entity identified uniquely
within a source I , located in a geographical pointp and accompanied
by a set of attributes A = {ai }.

The attributes connected to an s can be categorized as:
• Spatial: the point where the entity is located, expressed in
longitude and latitude.
• Textual: attributes that are in the form of text such as name,
address, website, description, etc.
• Semantic: attributes in the form of text that enrich the se-
mantics behind a spatial entity. Examples of this type are
categories, keywords, metadata, etc.
• Date, time or number: other details about a spatial entity
such as phone, opening hours, date of foundation, etc.

An example of a spatial entity originating from Yelp can be
a place named "Star Pizza" in the point (56.716 10.114), with the
keywords "pizza, fast food", and with address "Storegade 31". The
same spatial entity can be found again in Yelp or other sources,
sometimes having the same attributes, more, less or even attributes
with contradictory values. Thus, there is a need for an approach
that can unify information within and across different sources in
an intelligent manner.

Problem definition: Given a set of spatial entities S originating
from multiple sources, the spatial entity linkage problem aims to find
those pairs of spatial entities ⟨si , sj ⟩ that refer to the same physical
spatial entity.

In the following section, we introduce QuadSky, our solution to
the spatial entity linkage problem.

3.2 QuadSky Approach
We propose QuadSky, a solution based on a quadtree data parti-
tioning and skyline exploration. The overall approach is detailed
in Fig. 1. QuadSky consists of three main parts: spatial blocking
(QuadFlex), pairwise comparisons and labelling the pairs (SkyEx). S
contains all spatial entities from all sources I . We propose QuadFlex,
a quadtree-based solution that can perform the spatial blocking
by respecting the distance between spatial entities and the density
of the area. The output of QuadFlex is a list of leaves with spatial
entities located nearby. Within the leaves, we perform the pairwise
comparisons of the attributes. After this second phase, we obtain
a list of pairs of spatial entities and their similarities of attributes.
In order to decide which pairs dictate a match and which not, we
propose a novel technique, referred to as SkyEx that explores k sky-
lines (concepts detailed in Section 3.5) of the pairs. SkyEx separates
the pairs that refer to the same physical spatial entity (the positives
class) from the rest (the negative class). In the following sections,
we detail each of the phases of QuadSky.

3.3 Spatial Blocking
Performing all possible comparisons between pairs of spatial enti-
ties is time-consuming. Since spatial proximity is a strong indicator
in finding a match, the first step is to group nearby spatial entities
in blocks. Several generic blocking techniques have been discussed

Figure 1: QuadSky approach

in [23, 24], including methods based only on one attribute or sev-
eral ones, block purging (discards the blocks that are over the size
limit), etc. However, these techniques are mostly based on textual
attributes and not applicable to spatial blocking. We propose a
quadtree-based solution (QuadFlex) that uses a tree data structure
but also preserves the spatial proximity of spatial entities. Our con-
tribution is twofold; we use quadtrees (meant for spatial indexing)
for spatial blocking, and we modify the recursive procedure of the
quadtrees to accommodate more points that are nearby instead of
splitting them arbitrarily in different children.

Figure 2: QuadFlex versus quadtree

A quadtree is a tree whose nodes are always recursively split
into four children when the capacity is filled [28]. Quadtrees of n
points and d depth can be constructed in O((d + 1)n) time. After
the quadtree is constructed, the points that fall in the same leaf
are nearby spatially. Hence, these leaves are good candidates to be
spatial blocks. There are several issues with the existing quadtree
algorithm. First, a quadtree needs a capacity (number of points) as
a parameter. The capacity is not a meaningful parameter for spatial
blocking, while the density of the area is a better candidate. For
example, if the area is too dense (e.g., city center), even though the
capacity is not reached, a further split would be more beneficial.
Spatial entities in the city center tend to be nearby, but they are
more unlikely to be the same. On the contrary, two points in the
countryside (e.g., a farm) might be farther apart, but they still might
be the same entity. Second, a quadtree does not limit the distance
between points. Even though two points might be in an area that
respects the density, if they are quite distant from each other, it is
not necessary to compare them. The maximal distance between two
points in a child is the diagonal of the area (all quadtree children are
rectangular). We usedm, the diagonal of an area, as a parameter that
controls the distance of points rather than comparing all distances.
Finally, a quadtree splits into four children, and sometimes nearby
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points might fall into different leaves. Hence, we might miss good
pairs. We modify the procedure of the assignment of the points
into a child by allowing more than one assignment.

Algorithm 1 QuadFlex algorithm
Input: A set of entities S = {si }, diagonalm, density d
Output: The leaves QuadFlex Q Q .leaves() ;
1: Create Q (m, d ) where Q has the dimensions of the bounding box of S
2: for each s in S do
3: Q .insert(s) // Insert s into the QuadFlex
4: end for

return Q .leaves()

Method insert (s)
5: if this.children , ∅ then
6: Indexes← getIndex(s) // Find where s belongs
7: for each i in Indexes do
8: this.child[i].insert(s) // Insert s to the children it belongs
9: end for
10: end if
11: if this.diagonal > m or this.density > d then
12: Split the current object this into 4 children // The area is larger or denser than

our restrictions, so split as in the traditional quadtree
13: end if
14: Indexes← getIndex(s)
15: for each i in Indexes do
16: this.child[i].insert(s)
17: end for

return

Method getIndex (s)
18: Let vertical be the line that passes at 0.75 of the width of this
19: Let horizontal be the line that passes at 0.75 of the height of this
20: if s is left of vertical and above horizontal then
21: Indexes.add(1) // s fits in child[1]
22: end if
23: if s is right of vertical and above horizontal then
24: Indexes.add(2) // s fits in child[2]
25: end if
26: if s is left of vertical and below horizontal then
27: Indexes.add(3) // s fits in child[3]
28: end if
29: if s is right of vertical and below horizontal then
30: Indexes.add(4) // s fits in child[4]
31: end if

return Indexes

Fig. 2 shows the modifications that we do to the construction of
the traditional quadtree for our version QuadFlex. The traditional
quadtree divides the area of each parent into four smaller areas, the
children. A point belongs only to one child. In our modification,
the area will split similarly to the quadtree, but when we assign
a point to a child, we will consider including points that fall near
the border also in the current child. For example, in Fig. 2, the red
dashed line shows the area that will be considered to include points
in the neighbors. We will add two points in child[0], one coming
from child[1] and one from child[3]. Similarly, child[1] and child[3]
will receive a point from child[4].

Algorithm 1 details the procedure for retrieving the spatial blocks
with QuadFlex. The algorithm creates the root of the QuadFlex tree
with the bounding box of the data and parametersm and d (line 1).
Then, it inserts each spatial entity into the QuadFlex (line 4) and
finally returns its leaves. The methods insert(s) and дetIndex(s)
are self calls on the QuadFlex object (this). The insertion procedure
is similar to the traditional quadtree except that the constraint is
not the capacity but the diagonal of the aream (maximal distance
between points) and the density of the area d . Hence, if the diagonal

of the QuadFlex is more than the distancem or the density is larger
than our defined value d (line 12), the QuadFlex, similarly to a
quadtree, will split into four children. However, in contrast to the
traditional quadtree, a spatial entity might belong to more than
one child. The method дetIndex(s) gets the list of indexes of the
children where the new point will be assigned. Even thoughQ splits
into 4 children, the lines vertical and horizontal (corresponding to
the red dashed lines in Fig. 1) allow a logical overlap of the areas
and thus, neighboring spatial entities will not be separated.

3.4 Pairwise Comparisons
After the spatial blocking, we perform a pairwise comparison of
spatial entities that fall in the same leaf. Next, we describe the
metrics for different types of attributes.

Textual Similarity. Wemeasure the textual similarity of spatial
entities using the edit distance between the words. The Levenshtein
distance [18] between string s1 and string s2 d(s1, s2) is the number
of edits (insertion, deletion, change of characters) needed to convert
string s1 to string s2. We define the similarity as:

TextSim(s1, s2) = (1 −
d(s1, s2)

max(|s1 |, |s2 |)
) (1)

Example 3.1. Let us consider "Skippers Grill" and "Skippers Grill-
bar". The Levenshtein distance to convert "Skippers Grill" to "Skip-
pers Grillbar" is 3 (3 insertions). The lengths of the first and the sec-
ond string are 14 and 17 respectively. So, TextSim("Skippers Grill",
"Skippers Grillbar") = 1 − (3/max(14, 17) = 0.8235.

Note here that not all textual attributes can be handled similarly.
String similarity metrics are usually appropriate for attributes like
names, usernames, etc. Some other textual attributes require other
metrics that need to be customized. In this paper, we consider
address as a specific textual attribute. The similarity between two
addresses cannot be measured with Levenshtein, Jaccard, Cosine,
etc. since a small change in the address might be a giant gap in the
spatial distance between the entities. For example, "Jyllandsgade 15
9480 Løkken" and "Jyllandsgade 75 9480 Løkken" have a distance
of 1 and Levenshtein similarity of 0.963, but they are 650 meters
apart. However, "Jyllandsgade 15 9480 Løkken" and "Jyllandsgade
15 9480 Løkken Denmark" have a distance of 8 and Levenshtein
similarity of 0.772, but they are the same building. In [4, 16] the
address is considered as another textual attribute without using
its real semantics. In our case, we perform some data cleaning
(removing commas, punctuation marks, lowercase, etc.), and then
we search for equality (s1 = s2) or inclusion (s1 ⊂ s2 or s2 ⊂ s1). We
assign a similarity of 1 in the case of equality and 0.9 in the case of
inclusion. Otherwise, the strings are not considered the same.

Semantic Similarity. The similarity of fields like categories,
keywords ormetadata cannot be compared only syntactically. Some-
times, several synonyms are used to express the same idea. Thus,
we need to find a similarity than considers the synonyms as well.
We use Wordnet [11] for detecting the type of relationship between
two words and Wu&Palmer similarity measure (wup) [34], which
calculates how related two words are by taking into account the
depths of the two synsets (sets of synonyms) in WordNet, along
with the depth of the Least Common Subsumer (the most specific



Multi-Source Spatial Entity Linkage SSTD ’19, August 19–21, 2019, Vienna, Austria

concept that is an ancestor of both words). The semantic similarity
between two spatial entities is the maximal similarity between their
list of categories,keywords or metadata. The semantic similarity of
the spatial entities s1 and s2 is:

SemSim(s1, s2) = max{wup(ci , c j )} (2)

where ci ∈ C1 and c j ∈ C2 and C1 is the set of keywords of s1 and
C2 is the set of keywords s2.

Example 3.2. Let us take an example of two spatial entities s1
and s2 and their corresponding semantic information expressed as
keywords C1 = {"restaurant", "italian"} and C1 = {"food", "pizza"}.
The similarity between each pair is wup("restaurant", "food") =
0.4, wup("italian", "food") = 0.4286, wup("restaurant", "pizza") =
0.3333 and wup("italian", "pizza") = 0.3529. Finally, the semantic
similarity of s1 and s2 is SemSim(s1, s2) = max{0.4, 0.4286, 0.3333,
0.3529} = 0.4286.

Date, time or numeric similarity. The similarity between two
fields expressed as numbers, dates, times or intervals is simply a
boolean decision (true or false). For example, if the phone numbers
change with only one digit, they are still different. Even though
the similarity of these fields relies only on an equality check, most
of the effort is put in data preparation. For example, before the
comparison, the different phone formats should be identified and
cleaned from prefixes. Other data formats like intervals (opening
hours) might require temporal queries for similarity, inclusion, and
intersection of the intervals. In this paper, we do not use these
attributes for measuring the similarity between spatial entities, but
for constructing the ground truth.

Summary. Spatial entities are characterized by different spatial
attributes that differ in formats but also in the semantics. Textual
attributes are the most studied in the literature, and several sim-
ilarity metrics have already been proposed. We use Levenshtein
while comparing the names of spatial entities, and customized com-
parisons for the address. Thus, we check for equality or inclusion
to detect similar addresses. Metadata, keywords, categories, etc.
are attributes that carry semantics. Since textual similarity cannot
measure the similarity between synonyms, we rely on Wordnet
to detect similar keywords attached to the spatial entities. Finally,
other formats such as numbers, intervals, timestamps, etc. can be
checked for equality, but also some background knowledge might
be needed to detect matches.

3.5 Labeling the Pairs
After the pairwise comparison, the pairs are represented as points
in a space with n dimensions, where each dimension is an attribute.
A pair has n similarity values, one for each attribute. We denote as
δa the similarity of two spatial entities for attribute a. For example,
a pair ⟨s1, s2⟩ is represented as (δa1 ,δa2 ...δan ). The problem that
we need to solve is which ⟨si , sj ⟩ pairs indicate a strong similarity
and should be considered for a match. This is an old problem in
the entity linkage community. A classifier [9, 13, 17] can learn the
behavior of the matches and detect the positive class. However, it
is difficult to obtain labeled data, especially across different sources.
Moreover, there is always the risk of overfitting when training a
classifier on a sample. Some works assign weights on the similarity

scores and test different combinations [17, 22, 26]. The problem
that arises with these methods is that finding the best combination
might require extensive experiments and might overfit the data.

We propose a more relaxed technique that uses Pareto optimality
[6] for filtering the positive class. A solution (x ,y) is Pareto optimal
when no other solution can increasex without decreasingy. The points
in the same Pareto frontier or skyline have the same utility. Widely
used in economics and multi-objective problems, Pareto optimality
is free of weights and similarity score functions. In the context of
entity resolution, the skylines provide a selection of points that
are better than others, but without quantifying how much better.
The pairs that refer to the same physical spatial entity (the positive
class) are expected to have high values of δ . In general, the positive
class is the minority and is spread all over the dataset, resembling
outliers. This means that the first Pareto optimal frontier might
contain only a couple of points. Thus, an exploration of several
skylines (k levels) is needed. Under the assumption that the best
values of δ belong to the pairs from the positive class, we label the k
skylines as the positive class and the rest as the negative. To the best
of our knowledge, we are the first to propose a Pareto optimal solution
for detecting matches for an entity linkage/resolution problem.

Definition 3.2. An attribute a is positive discriminating if its sim-
ilarity δa indicates a positive class rather than a negative.

An example of a positive discriminating attribute is the similarity
of name. A higher name similarity is more likely to indicate a match
than a non-match. For example, the name similarity for Mand &
Bil and Mand og Bil is 0.75, and for Solid and Sirculus ApS is 0.16 .
Hence, the former pair has a higher probability of being a match
than the second. Examples of negative discriminating attributes are
the edit distance between two names. If the distance between the
names is high, then the pairs are less likely to be a match.

Definition 3.3. The utility of a positive discriminating attribute
a to the positive class, denoted as ua , is a monotonically increas-
ing function that quantifies the contribution of the similarity of
attribute δa to indicate a match.

Each attribute contributes to the labeling problem. A higher
similarity δa of a has a higher utility than a lower value of δa .
Hence, if δa (⟨s1, s2⟩) > δa (⟨s3, s4⟩), then ua (⟨s1, s2⟩) > ua (⟨s3, s4⟩).

Definition 3.4. The utility of a pair denoted as u(⟨si , sj ⟩) is sum
of the utilities of each of the attributes. u(⟨si , sj ⟩) =

∑n
i=1 uai .

Note that the utility of a pair is not the sum of the similarities
of the attributes (u(⟨si , sj ⟩) ,

∑n
i=1 δai ) but the sum of their utili-

ties (u(⟨si , sj ⟩) =
∑n
i=1 uai ). Nevertheless, u(⟨si , sj ⟩) =

∑n
i=1 δai =∑n

i=1 uai is a specific case.

Definition 3.5. A skyline of level k denoted as Skyline(k) is the
collection of pairs ⟨si , sj ⟩ of equal utility such that uSkyline(k ) >
uSkyline(k−1).

Obviously, Skyline(1) is the Pareto optimal frontier with the best
values of δa . In order to continue with Skyline(2), the points of
Skyline(1) are removed, and the frontier is calculated again. Every
time we explore level k , the values in Skyline(k) are the ones with
the highest utility. This means that there is no other point in a lower
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level that can bring a higher utility to the positive class. This proce-
dure continues for k steps. Algorithm 2 formalizes our proposed
procedure Skyline Explore (SkyEx) for labelling the pairs. The input
is the set of pairs P produced from the QuadFlex blocking technique
and the number of skyline levels k that we will explore. We find
the points with the best combinations of δ that dominate the rest
of the points and consequently, have a higher utility (line 3). Then,
we put these points in P+ and remove them from P (line 5). After
all k levels are computed, we return the positive set of pairs P+ and
the negative P−.

Algorithm 2 Skyline Explore (SkyEx)
Input: A set of pairs P = { ⟨si , sj ⟩ }, a number of skyline levels k
Output: A set of positive pairs P+ , a set of negative pairs P− ;
1: P+ ← ∅
2: for m in [1, k] do
3: Filter Skyline(m) = { ⟨si , sj ⟩ } | ∀⟨s ′, s ′′⟩ ∈ P − {⟨si , sj ⟩ } , u(⟨si , sj ⟩) >

u ⟨s ′, s ′′⟩ } // Find the Skyline
4: Add Skyline(m) to P+ // Label the skyline pairs as positive
5: P = P − Skyline(m)
6: end for
7: P− ← P // Label the rest as negative

return P+, P−

In contrast to techniques that use a similarity score function,
SkyEx abstracts the concept of utility. Thus, no weights or similarity
function is needed. Given that the points with a high utility are
generally scattered, SkyEx can detect the positive class better than
a clustering technique, which would fail in clustering together the
positive class. Moreover, the flexibility of SkyEx makes it applicable
to all problems where the expert knowledge on the contribution of
the attributes is missing. Finally, SkyEx does not learn any behavior,
so there is no risk of overfitting.

4 EXPERIMENTS
4.1 Dataset Description
The spatial entities that will be used in these experiments originate
from four sources, namely Google Places (GP), Foursquare (FSQ),
Yelp, and Krak. Krak (www.krak.dk) is a location-based source that
offers information about companies, enterprises, etc. in Denmark
and is also part of Eniro Danmark A / S., which publishes The Yellow
Pages. The data is obtained by using the available APIs and the
algorithm detailed in [14]. The distribution of the spatial entities
can be observed in Fig. 3. The dataset consists of 75,541 spatial
entities where 51.50% comes from GP, 46.22% from Krak, 0.03%
from FSQ, and 2.23% from Yelp. All the sources internally might
contain possible links, so we need to compare entities within and
outside the sources.

4.2 QuadFlex Performance
In this section, we compare the performance of our proposed block-
ing technique to the traditional quadtree and Fixed Radius Nearest
Neighbors algorithm [3] (FNN). FNN finds the neighbors that fall
within a fixed radius from each point. QuadFlex and the quadtree
algorithm are implemented in Java, while FNN is run on a Postgres
database (https://www.postgresql.org) using spatial indexes; more
specifically, two spatial indexes: GiST (https://www.postgresql.org/
docs/current/gist.html) (optimized C implementation of B-trees and

Figure 3: North Denmark dataset

R-trees) and SP-GiST (https://www.postgresql.org/docs/current/
spgist.html) (optimized C implementation of quadtrees and k-d
trees). Our original dataset contains 75,541 entities in the whole
North Denmark region (around 16 towns, 7,933 km2), so the density
is not high. A high data density means more neighbors and conse-
quently, more pairs to compare. In order to test our QuadFlex on
different data densities, we simulate up to 1,000,000 random points
from Aalborg (139 km2).

Fig. 6 shows the comparison of quadtree, QuadFlex and FNN
in terms of execution time (Fig. 6a) and number of comparisons
(Fig. 6b). The FNN versions with data are computed on the database,
and then the pairs are loaded back to the java implementation. The
quadtree has the lowest execution time, followed by QuadFlex. FNN
SP-GiST is comparable and sometimes even better than QuadFlex
for small datasets. However, when the size of the dataset increases,
QuadFlex manages to maintain an execution time that is eight
times less than FNN GiST and 3 times less than FNN SP-GiST. FNN
with SP-GiST index outperforms FNN GiST for all dataset sizes.
As for the number of comparisons, QuadFlex enumerates 12 times
more comparisons than quadtree, so our technique for not missing
nearby pairs turned out effective. Moreover, QuadFlex contains
almost all (99.99%) comparisons of FNN, compared to quadtree that
contains only 10% of FNN. Furthermore, given that the scalability
of QuadFlex is better than FNN, and QuadFlex is independent of the
database implementations, the loss of around 0.01% of comparisons
is insignificant. Moreover, this difference in comparisons can simply
be explained by the fact that QuadFlex uses a rectangular area with
diagonal ofm meters, whereas FNN uses a circle with radius m

2 . In
the case of a square with diagonalm, the surface will be m2

2 , but for
the circle with the diameterm the surface is π m2

4 . So, the surface
of the circle is π

2 times more.

4.3 SkyEx results
In this section, we evaluate the results of our proposed SkyEx. In
the context of our problem, we define true positivesTP as pairs that
refer to the same physical entity and correctly labeled as positives,
true negatives TN as pairs referring to different physical entities
and correctly labeled as negatives , false positive FP as pairs that
do not refer to the same physical entities but wrongly labeled as
positives, and FN as pairs that refer to the same physical entity
but wrongly labeled as negatives. We measure precision = T P

T P+F P ,
recall = T P

T P+FN and F-measure (F1) = 2 precision∗recall
precision+recall .
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(a) Precision and recall (b) F-measure

Figure 4: SkyEx performance on Dsample

(a) Precision and recall (b) F-measure

Figure 5: SkyEx performance on Dfull
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Figure 6: Comparing quadtree, QuadFlex and FNN

(a) Actual classes (b) SkyEx classes

Figure 7: Positive (in pink) versus negative (in sky blue)
classes for actual (a) and SkyEx (b) results

We ran QuadFlex with 100 m and no density restriction, and
we obtained 777,452 pairs. Having the same website or phone is a
strong indicator of a match, so we use these attributes to infer the
label. We refer to this labeling as automatic labeling. However, cases
with different phone number or website but still the same entity, or
same phone number but different entity might occur. For example,
an entrepreneur who owns a fishing company and also a restaurant
might use the same phone for both. Another example is the case of
two different phones for the same entity on different sources. For
this reason, we manually checked the labels of a sample of 1,500
pairs of entities, sometimes checking them even on maps and on the

original sources. We will refer to the sample of manually checked
pairs as Dsample and to the full dataset as Dfull. Checking the labels
manually on the full dataset of 777,452 pairs is unfeasible. Hence,
we checked around 10,000 of the pairs, and for the rest, we rely on
automatic labeling.

The results of SkyEx on Dsample and Dfull are presented in Figs. 4
and 5. The curves in Figs. 4a and 5a shows the evolution of precision
(y-axis) and recall (x-axis) while we move from one skyline to the
next. As expected, the more we explore, the more likely it is to retrieve
more true positives and thus, improve the recall. However, the more
we explore and label pairs as positives, the more likely it is to increase
the number of false positives, so the precision degrades. The algorithm
explores several trade-offs, where points A and B are among the
best. PointAwith 0.87 precision and 0.82 recall in Fig. 4a is the same
best point in terms of F-measure as well. Fig. 4b shows the levels of
the skyline, and the value of F-measure achieved. The highest value
is 0.85 that corresponds to k = 90. Point B is also a good candidate
with 0.84 precision and recall.

The evaluation on the full dataset yields lower values compared
to the sample, which might be a simple consequence of automatic
labeling. Even though the labels are not all checked, precision and
recall inDfull yield satisfactory values. Two of the best combinations
are pointsA and B, whereA is the combination also with the highest
F-measure of 0.72 and 271 skyline levels Fig. 5b. A offers 0.6 recall
and 0.87 precision while B offers a higher recall of 0.65 but a lower
precision of 0.76. To have an idea of the real classes in Dfull and the
skyline, we plotted their distribution in Fig. 7. Fig. 7a shows the
actual positive classes in pink and the negative ones in sky blue. It
is noticeable that the positive class pairs are allocated in the highest
values of the dimensions. SkyEx with 271 levels (Fig. 7b) is able
to capture this behaviour and achieve 0.6 recall and 0.87 precision.
Despite the differences between both plots, SkyEx shows promising
results in separating the positive class from the negative one.

4.4 Experimenting with Different QuadFlex
Parameters

So far, we used QuadFlex blocking technique with 100 meters and
no density restriction. In this section, we will evaluate our approach
QuadSky for different blocking parameters.
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(a) m=1 (b) m=20 (c) m=40

(d) m=60 (e) m=80 (f) m=100

Figure 8: Performance of SkyEx for different m, no density limit

Changing m, no density limit. In this experiment, we test
different values ofm used in QuadFlexfor creating spatial blocks.
We testm values of 1, 20, 40, 60, 80, and 100 meters. The size of the
dataset for each of them is presented in Table 1. The spatially close
points are likely to be a match. Hence, the percentage of the positive
class is generally higher for smaller values of m. An interesting
case ism = 1, where the percentage of the positive class is lower
thanm = 20. One would expect that points that are 1 meter apart
would unquestionably be a match. However, this is not always the
case. Shopping malls, buildings that host several companies, etc.
are characterized by the same coordinates but not necessarily the
same spatial entities.

Meters 1 20 40 60 80 100

Total 41053 118437 226331 372553 557421 777452
% of pos 17.11% 19.88% 11.28% 7.06% 4.82% 3.49%

Table 1: Dataset characteristics for different m

The results for different values ofm are presented in Fig. 8. The
point A is the value with the highest F-measure (F1). For all cases,
the recall is higher than 0.6. The precision is higher than 0.8 for all
values ofm, exceptm = 1, where the precision is 0.67. Form = 1,
the positive and negative class are mixed, thus SkyEx loses a bit in
precision. This is also an argument against the works that merge
arbitrarily points that are 5 m apart. Spatial proximity is not a
definitive indicator of a match.

Changing d, m ≤ 100. The density is another parameter of
QuadFlex that helps in creating smaller blocks in dense areas and
larger ones in sparse areas. In this experiment, we test different

values of density d and its effect on the results. The size of the
dataset and the percentage of the classes in Table 2. When the
density is smaller, we force QuadFlex to split further and create
smaller blocks. Thus, the number of pairs reduces. Note that, on
the contrary, the percentage of positives increases. Indeed, further
splits allow us to create better blocks containing a higher percentage
of positives. However, when the density increases above 30s

1000m2 ,
fewer and fewer blocks are split further, so the dataset size and the
percentage of the positives do not vary significantly.

Density 10s
1000m2

20s
1000m2

30s
1000m2

40s
1000m2

50s
1000m2

60s
1000m2

Total 290653 590583 711423 754195 770987 776664
% pos 8.61% 4.57% 3.81% 3.59% 3.51% 3.49%

Table 2: Dataset characteristics for different d

The results after running SkyEx are presented in Fig. 9. In all
the cases, the recall stays above 0.61 and the precision above 0.87.
A slightly better precision (0.88) and recall (0.63) is achieved in
the case of a density of 10s

1000m2 (the lowest parameter). From both
experiments withQuadFlex parameters, we can conclude that SkyEx
adapts very well in finding the correct classes even when the size of
blocks change and even when the percentage of positives over negatives
varies.

4.5 Comparison with Baselines
Even though there are several papers in spatial data integration,
the works of [4, 16, 21] are the most similar to ours, as the rest of
the related work considers only spatial objects, not spatial entities,
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(a) d=10/1000 m2 (b) d=20/1000 m2 (c) d=30/1000 m2

(d) d=40/1000 m2 (e) d=50/1000 m2 (f) d=60/1000 m2

Figure 9: Performance of SkyEx for different d, m=100

or uses supervised learning techniques. We will compare QuadSky
to the following baselines:

(1) Berjawi et al.[4] propose Euclidean distance for the geo-
graphic coordinates and Levenshtein similarity for all other
attributes. The similarities are integrated into a global simi-
larity computed as a simple sum of the attribute similarities.
The attributes mentioned in the paper are the name and the
phone. However, since the phone is part of our automatic
labeling, it can not be used in the algorithm as well. The au-
thors consider pairs with score ≥ 0.75 as a match with high
confidence. We compare to this technique using name + ad-
dress + geographic coordinates (V1) and name + geographic
coordinates (V2).

(2) Morana et al.[21] suggest filtering entities that share the
same category or a token in the name. Then these entities are
compared using the Euclidean distance for the coordinates,
Levenshtein for the address and name, and Resnik similarity
(Wordnet) for the category. Attributes like address, phone,
etc. are considered secondary, so they are given 1

3 of the
weight in the similarity score function, while name, category
and geographic proximity carry 2

3 of the weight. The authors
show top k matches for each entity to the user to decide.

(3) Karam et al.[16] starts with filtering spatial entities that are
5 m apart. Then, the similarity of the name is measured
with Levenshtein distance, the geographic similarity with
Euclidean distance, and the keywords are compared seman-
tically. In order to decide which pairs to match and which
not, the similarities are fused using belief theory [27].

Figure 10: Performance of Morana et al.[21] on Dfull

The results using Dfull and Dsample are presented in Table 3. In
general, all the methods performed better in the manually labeled
dataset Dsample due to the better quality of the labels. Berjawi et
al.(V1)[4] has the highest precision of above 0.93, but a poor recall
of at most 0.27 for both datasets and thus, a low F-measure of at
most 0.43. It is actually expected, as Levenshtein similarity does
not perform well with fields like address or phone, where a change
in the digits makes a huge difference in the similarity of attributes.
Berjawi et al.(V2)[4] yields reasonable results, the second best after
QuadSky, with a precision of 0.73 in Dfull and 0.97 in Dsample, and a
recall of 0.56 in Dfull and 0.60 in Dsample. The F-measure is 0.63 in
Dfull and 0.74 in Dsample.

To compare with Morana et al.[21], we tried all values k from 1 to
the maximal matches for a single point. We plotted all combinations
of precision and recall for different values of k in Fig. 10 for Dfull.
The highest value of F-measure corresponded to a precision of 0.39
and a recall of 0.60. The behavior of Morana et al.[21] in Dsample
is similar; the best value of F-measure was achieved for k = 3 and
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results are similar to those in Dfull. The work of Karam et al.[16]
achieves the highest recall of 0.73 but a very low value of precision
of 0.23 for Dfull. As a result, the F-measure is only 0.47. However,
in Dsample, the method performs better overall (F-measure =0.6).

In comparison to all the baselines, QuadSky provides the best trade-
off between precision and recall, and thus, the highest F-measure in
both datasets. In the case of Dsample, QuadSky achieves the best
recall compared to all baselines. The highest precision values for
both datasets is achieved by Berjawi et al.(V1)[4] but a very low
recall and poor model performance overall. In fact, models that
achieve extreme values (high precision-low recall or low precision-
high recall) are not a viable solution because they are either too
restrictive or too flexible, and their predictability is poor. Most of
the current work base their scoring function on the assumption that
the geographical proximity is essential, so besides spatial blocks,
they include Euclidean distance in their similarity functions. Quad-
Sky uses the spatial proximity for identifying candidates but not for
making a decision. Berjawi et al. [4] (V2) assumes the same weights
for all similarities, and the reported values of precision and recall
are reasonable. However, the behaviors of the pairs can be of all
types. QuadSky can capture these different behaviors better than a
simple sum would.

Dfull Dsample

Approach Precision Recall F1 Precision Recall F1

Berjawi et al.(V1)[4] 0.93 0.26 0.41 1.00 0.27 0.43
Berjawi et al.(V2)[4] 0.73 0.56 0.63 0.97 0.60 0.74

Morana et al.[21] 0.39 0.60 0.47 0.33 0.60 0.43

Karam et al.[16] 0.23 0.73 0.35 0.54 0.68 0.60

QuadSky 0.87 0.60 0.72 0.87 0.82 0.85

Table 3: Comparison with the baselines

5 CONCLUSIONS AND FUTUREWORK
Location-based sources provide rich information about spatial enti-
ties in terms of details and semantics. However, identifying which
pairs of spatial entities refer to the same physical entity across
different sources is a challenging problem due to the lack of la-
beled data, data quality problems in the sources and the difficulty of
coming up with a data independent scoring function. In this paper,
we addressed the problem of spatial entity linkage across multiple
location-based sources. We proposed QuadSky, an approach that
consists of two novel algorithms QuadFlex and SkyEx. QuadFlex
arranges the spatial entities into spatial blocks with a low execution
time (4-8 times less than Fixed Radius Nearest Neighbors algorithm
[3] (FNN)) and a high percentage of comparisons (99.99% of FNN
comparisons). SkyEx solves the data labeling problem using Pareto
optimality and yields good results in terms of precision and recall.
Moreover, due to its flexibility, SkyEx better captures the behavior of
pairs and outperforms the existing baselines in terms of F-measure.
More specifically, SkyEx achieves 0.84 precision and 0.84 recall on
a manually labeled dataset and 0.87 precision and 0.6 recall on an
automatically labeled dataset. In future work, we aim to study differ-
ent blocking techniques that combine several attributes. Moreover,
we plan to improve our proposed SkyEx in order to automatically
select the k number of skylines based on the dataset characteristics.
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