9 research outputs found

    Products of distance degree regular and distance degree injective graphs.

    Get PDF
    The eccentricity e (u) of a vertex u is the maximum distance of u to any other vertex in G. The distance degree sequence (dds) of a vertex v in a graph G = (V, E) is a list of the number of vertices at distance 1, 2, …, e (u) in that order, where e (u) denotes the eccentricity of u in G. Thus the sequence is the dds of the vertex vi in G where denotes number of vertices at distance j from Vi . A graph is distance degree regular (DDR) graph if all vertices have the same dds. A graph is distance degree injective (DDI) graph if no two vertices have same dds. In this paper we consider Cartesian and normal products of DDR and DDI graphs. Some structural results have been obtained along with some characterizations

    Products and Eccentric digraphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph(digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we consider the eccentric digraphs of different products of graphs, viz., cartesian, normal, lexicographic, prism, et

    Products and Eccentric Diagraphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a graph(digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and only if v is an eccentric vertex of u in G. In this paper, we consider the eccentric digraphs of different products of graphs, viz., cartesian, normal, lexicographic, prism, etc

    Products and Eccentric Diagraphs

    Full text link

    Distance regularity of compositions of graphs

    No full text
    We study preservation of distance regularity when taking strong sums and strong products of distance-regular graphs. MSC 2000 Classification: 05C12 Keywords: Distance-regular graphs, compositions of graphs, sum of graphs, Cartesian product of graphs, product of graphs, direct product of graphs, Kronecker product of graphs, tensor product of graphs, strong sum of graphs, strong product of graphs.
    corecore