2 research outputs found

    Distance in the Forest Fire Model - How far are you from {Eve}?

    No full text

    Contagion aĢ€ effet de seuil dans les reĢseaux complexes

    Get PDF
    Networks arise frequently in the study of complex systems, since interactions among the components of such systems are critical. Networks can act as a substrate for dynamical process, such as the diffusion of information or disease throughout populations. Network structure can determine the temporal evolution of a dynamical process, including the characteristics of the steady state.The simplest representation of a complex system is an undirected, unweighted, single layer graph. In contrast, real systems exhibit heterogeneity of interaction strength and type. Such systems are frequently represented as weighted multiplex networks, and in this work we incorporate these heterogeneities into a master equation formalism in order to study their effects on spreading processes. We also carry out simulations on synthetic and empirical networks, and show that spreading dynamics, in particular the speed at which contagion spreads via threshold mechanisms, depend non-trivially on these heterogeneities. Further, we show that an important family of networks undergo reentrant phase transitions in the size and frequency of global cascades as a result of these interactions.A challenging feature of real systems is their tendency to evolve over time, since the changing structure of the underlying network is critical to the behaviour of overlying dynamical processes. We show that one aspect of temporality, the observed ā€œburstinessā€ in interaction patterns, leads to non-monotic changes in the spreading time of threshold driven contagion processes.The above results shed light on the effects of various network heterogeneities, with respect to dynamical processes that evolve on these networks.Les interactions entre les composants des systeĢ€mes complexes font eĢmerger diffeĢrents types de reĢseaux. Ces reĢseaux peuvent jouer le roĢ‚le dā€™un substrat pour des processus dynamiques tels que la diffusion dā€™informations ou de maladies dans des populations. Les structures de ces reĢseaux deĢterminent lā€™eĢvolution dā€™un processus dynamique, en particulier son reĢgime transitoire, mais aussi les caracteĢristiques du reĢgime permanent.Les systeĢ€mes complexes reĢels manifestent des inteĢractions heĢteĢrogeĢ€nes en type et en intensiteĢ. Ces systeĢ€mes sont repreĢseteĢs comme des reĢseaux pondeĢreĢs aĢ€ plusieurs couches. Dans cette theĢ€se, nous deĢveloppons une eĢquation maiĢ‚tresse afin dā€™inteĢgrer ces heĢteĢrogeĢneĢiteĢs et dā€™eĢtudier leurs effets sur les processus de diffusion. AĢ€ lā€™aide de simulations mettant en jeu des reĢseaux reĢels et geĢneĢreĢs, nous montrons que les dynamiques de diffusion sont lieĢes de manieĢ€re non triviale aĢ€ lā€™heĢteĢrogeĢneĢiteĢ de ces reĢseaux, en particulier la vitesse de propagation dā€™une contagion baseĢe sur un effet de seuil. De plus, nous montrons que certaines classes de reĢseaux sont soumises aĢ€ des transitions de phase reĢentrantes fonctions de la taille des ā€œglobal cascadesā€.La tendance des reĢseaux reĢels aĢ€ eĢvoluer dans le temps rend difficile la modeĢlisation des processus de diffusion. Nous montrons enfin que la dureĢe de diffusion dā€™un processus de contagion baseĢ sur un effet de seuil change de manieĢ€re non-monotone du fait de la preĢsence deā€œrafalesā€ dans les motifs dā€™inteĢractions. Lā€™ensemble de ces reĢsultats mettent en lumieĢ€re les effets de lā€™heĢteĢrogeĢneĢiteĢ des reĢseaux vis-aĢ€-vis des processus dynamiques y eĢvoluant
    corecore