36,361 research outputs found

    European exchange trading funds trading with locally weighted support vector regression

    Get PDF
    In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series

    Optimization in a Simulation Setting: Use of Function Approximation in Debt Strategy Analysis

    Get PDF
    The stochastic simulation model suggested by Bolder (2003) for the analysis of the federal government's debt-management strategy provides a wide variety of useful information. It does not, however, assist in determining an optimal debt-management strategy for the government in its current form. Including optimization in the debt-strategy model would be useful, since it could substantially broaden the range of policy questions that can be addressed. Finding such an optimal strategy is nonetheless complicated by two challenges. First, performing optimization with traditional techniques in a simulation setting is computationally intractable. Second, it is necessary to define precisely what one means by an "optimal" debt strategy. The authors detail a possible approach for addressing these two challenges. They address the first challenge by approximating the numerically computed objective function using a function-approximation technique. They consider the use of ordinary least squares, kernel regression, multivariate adaptive regression splines, and projection-pursuit regressions as approximation algorithms. The second challenge is addressed by proposing a wide range of possible government objective functions and examining them in the context of an illustrative example. The authors' view is that the approach permits debt and fiscal managers to address a number of policy questions that could not be fully addressed with the current stochastic simulation engine.Debt management; Econometric and statistical methods; Fiscal policy; Financial markets

    Comparison of Support Vector Machine and Back Propagation Neural Network in Evaluating the Enterprise Financial Distress

    Full text link
    Recently, applying the novel data mining techniques for evaluating enterprise financial distress has received much research alternation. Support Vector Machine (SVM) and back propagation neural (BPN) network has been applied successfully in many areas with excellent generalization results, such as rule extraction, classification and evaluation. In this paper, a model based on SVM with Gaussian RBF kernel is proposed here for enterprise financial distress evaluation. BPN network is considered one of the simplest and are most general methods used for supervised training of multilayered neural network. The comparative results show that through the difference between the performance measures is marginal; SVM gives higher precision and lower error rates.Comment: 13 pages, 1 figur

    The Default Risk of Firms Examined with Smooth Support Vector Machines

    Get PDF
    In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitabil- ity of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate accounting ratios (predictors), length of training period and structure of the training sample in°uence the precision of prediction. Furthermore we show that oversampling can be employed to gear the tradeo® between error types. Finally, we illustrate graphically how di®erent variants of SSVM can be used jointly to support the decision task of loan o±cers.Insolvency Prognosis, SVMs, Statistical Learning Theory, Non-parametric Classification models, local time-homogeneity

    The Default Risk of Firms Examined with Smooth Support Vector Machines

    Get PDF
    In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate accounting ratios (predictors), length of training period and structure of the training sample influence the precision of prediction. Furthermore we showthat oversampling can be employed to gear the tradeoff between error types. Finally, we illustrate graphically how different variants of SSVM can be used jointly to support the decision task of loan officers.Insolvency Prognosis, SVMs, Statistical Learning Theory, Non-parametric Classification

    Ensemble Committees for Stock Return Classification and Prediction

    Full text link
    This paper considers a portfolio trading strategy formulated by algorithms in the field of machine learning. The profitability of the strategy is measured by the algorithm's capability to consistently and accurately identify stock indices with positive or negative returns, and to generate a preferred portfolio allocation on the basis of a learned model. Stocks are characterized by time series data sets consisting of technical variables that reflect market conditions in a previous time interval, which are utilized produce binary classification decisions in subsequent intervals. The learned model is constructed as a committee of random forest classifiers, a non-linear support vector machine classifier, a relevance vector machine classifier, and a constituent ensemble of k-nearest neighbors classifiers. The Global Industry Classification Standard (GICS) is used to explore the ensemble model's efficacy within the context of various fields of investment including Energy, Materials, Financials, and Information Technology. Data from 2006 to 2012, inclusive, are considered, which are chosen for providing a range of market circumstances for evaluating the model. The model is observed to achieve an accuracy of approximately 70% when predicting stock price returns three months in advance.Comment: 15 pages, 4 figures, Neukom Institute Computational Undergraduate Research prize - second plac

    Financial-distress prediction of Islamic banks using tree-based stochastic techniques

    Get PDF
    Purpose Financial distress is a socially and economically important problem that affects companies the world over. Having the power to better understand – and hence aid businesses from failing, has the potential to save not only the company, but also potentially prevent economies from sustained downturn. Although Islamic banks constitute a fraction of total banking assets, their importance have been substantially increasing, as their asset growth rate has surpassed that of conventional banks in recent years. The paper aims to discuss these issues. Design/methodology/approach This paper uses a data set comprising 101 international publicly listed Islamic banks to work on advancing financial distress prediction (FDP) by utilising cutting-edge stochastic models, namely decision trees, stochastic gradient boosting and random forests. The most important variables pertaining to forecasting corporate failure are determined from an initial set of 18 variables. Findings The results indicate that the “Working Capital/Total Assets” ratio is the most crucial variable relating to forecasting financial distress using both the traditional “Altman Z-Score” and the “Altman Z-Score for Service Firms” methods. However, using the “Standardised Profits” method, the “Return on Revenue” ratio was found to be the most important variable. This provides empirical evidence to support the recommendations made by Basel Accords for assessing a bank’s capital risks, specifically in relation to the application to Islamic banking. Originality/value These findings provide a valuable addition to the limited literature surrounding Islamic banking in general, and FDP pertaining to Islamic banking in particular, by showcasing the most pertinent variables in forecasting financial distress so that appropriate proactive actions can be taken. </jats:sec

    Estimation of Default Probabilities with Support Vector Machines

    Get PDF
    Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to estimate default probabilities of German firms. Our analysis is based on the Creditreform database. The results reveal that the most important eight predictors related to bankruptcy for these German firms belong to the ratios of activity, profitability, liquidity, leverage and the percentage of incremental inventories. Based on the performance measures, the SVM tool can predict a firms default risk and identify the insolvent firm more accurately than the benchmark logit model. The sensitivity investigation and a corresponding visualization tool reveal that the classifying ability of SVM appears to be superior over a wide range of the SVM parameters. Based on the nonparametric Nadaraya-Watson estimator, the expected returns predicted by the SVM for regression have a significant positive linear relationship with the risk scores obtained for classification. This evidence is stronger than empirical results for the CAPM based on a linear regression and confirms that higher risks need to be compensated by higher potential returns.Support Vector Machine, Bankruptcy, Default Probabilities Prediction, Expected Profitability, CAPM.

    A neural network model to forecast and describe bond ratings

    Get PDF
    Neural Network;Bond Ratings;accountancy
    corecore