18,764 research outputs found

    A Vision-Based Technique for Lay Length Measurement of Metallic Wire Ropes

    Get PDF
    The lay length of metallic wire ropes is an important dimensional quantity whose analysis is useful to highlight rope deformations due to distributed damages. This paper describes a measurement system that is based on a video camera and on an offline processing algorithm. The camera acquires an image sequence of the running rope; then, an image processing algorithm extracts the rope contour and measures both the distance among rope strands and the whole distance covered by the rope during the test. A mathematical model of the rope contour has been developed and employed to test the proposed algorithm with simulated data. Field tests have been carried out with the proposed system on a working aerial cableway using a general-purpose camer

    Minimizing the residual topography effect on interferograms to improve DInSAR results: estimating land subsidence in Port-Said City, Egypt

    Get PDF
    The accurate detection of land subsidence rates in urban areas is important to identify damage-prone areas and provide decision-makers with useful information. Meanwhile, no precise measurements of land subsidence have been undertaken within the coastal Port-Said City in Egypt to evaluate its hazard in relationship to sea-level rise. In order to address this shortcoming, this work introduces and evaluates a methodology that substantially improves small subsidence rate estimations in an urban setting. Eight ALOS/PALSAR-1 scenes were used to estimate the land subsidence rates in Port-Said City, using the Small BAse line Subset (SBAS) DInSAR technique. A stereo pair of ALOS/PRISM was used to generate an accurate DEM to minimize the residual topography effect on the generated interferograms. A total of 347 well distributed ground control points (GCP) were collected in Port-Said City using the leveling instrument to calibrate the generated DEM. Moreover, the eight PALSAR scenes were co-registered using 50 well-distributed GCPs and used to generate 22 interferogram pairs. These PALSAR interferograms were subsequently filtered and used together with the coherence data to calculate the phase unwrapping. The phase-unwrapped interferogram-pairs were then evaluated to discard four interferograms that were affected by phase jumps and phase ramps. Results confirmed that using an accurate DEM (ALOS/PRISM) was essential for accurately detecting small deformations. The vertical displacement rate during the investigated period (2007–2010) was estimated to be −28 mm. The results further indicate that the northern area of Port-Said City has been subjected to higher land subsidence rates compared to the southern area. Such land subsidence rates might induce significant environmental changes with respect to sea-level rise

    The impact of temporal sampling resolution on parameter inference for biological transport models

    Full text link
    Imaging data has become widely available to study biological systems at various scales, for example the motile behaviour of bacteria or the transport of mRNA, and it has the potential to transform our understanding of key transport mechanisms. Often these imaging studies require us to compare biological species or mutants, and to do this we need to quantitatively characterise their behaviour. Mathematical models offer a quantitative description of a system that enables us to perform this comparison, but to relate these mechanistic mathematical models to imaging data, we need to estimate the parameters of the models. In this work, we study the impact of collecting data at different temporal resolutions on parameter inference for biological transport models by performing exact inference for simple velocity jump process models in a Bayesian framework. This issue is prominent in a host of studies because the majority of imaging technologies place constraints on the frequency with which images can be collected, and the discrete nature of observations can introduce errors into parameter estimates. In this work, we avoid such errors by formulating the velocity jump process model within a hidden states framework. This allows us to obtain estimates of the reorientation rate and noise amplitude for noisy observations of a simple velocity jump process. We demonstrate the sensitivity of these estimates to temporal variations in the sampling resolution and extent of measurement noise. We use our methodology to provide experimental guidelines for researchers aiming to characterise motile behaviour that can be described by a velocity jump process. In particular, we consider how experimental constraints resulting in a trade-off between temporal sampling resolution and observation noise may affect parameter estimates.Comment: Published in PLOS Computational Biolog

    Isotropic inverse-problem approach for two-dimensional phase unwrapping

    Full text link
    In this paper, we propose a new technique for two-dimensional phase unwrapping. The unwrapped phase is found as the solution of an inverse problem that consists in the minimization of an energy functional. The latter includes a weighted data-fidelity term that favors sparsity in the error between the true and wrapped phase differences, as well as a regularizer based on higher-order total-variation. One desirable feature of our method is its rotation invariance, which allows it to unwrap a much larger class of images compared to the state of the art. We demonstrate the effectiveness of our method through several experiments on simulated and real data obtained through the tomographic phase microscope. The proposed method can enhance the applicability and outreach of techniques that rely on quantitative phase evaluation
    corecore