2 research outputs found

    Linear Boundary Port-Hamiltonian Systems with Implicitly Defined Energy

    Full text link
    In this paper we extend the previously introduced class of boundary port-Hamiltonian systems to boundary control systems where the variational derivative of the Hamiltonian functional is replaced by a pair of reciprocal differential operators. In physical systems modelling, these differential operators naturally represent the constitutive relations associated with the implicitly defined energy of the system and obey Maxwell's reciprocity conditions. On top of the boundary variables associated with the Stokes-Dirac structure, this leads to additional boundary port variables and to the new notion of a Stokes-Lagrange subspace. This extended class of boundary port-Hamiltonian systems is illustrated by a number of examples in the modelling of elastic rods with local and non-local elasticity relations. Finally it shown how a Hamiltonian functional on an extended state space can be associated with the Stokes-Lagrange subspace, and how this leads to an energy balance equation involving the boundary variables of the Stokes-Dirac structure as well as of the Stokes-Lagrange subspace.Comment: 23 page

    Dissipativity-based boundary control of linear distributed port-Hamiltonian systems

    No full text
    The main contribution of this paper is a general synthesis methodology of exponentially stabilising control laws for a class of boundary control systems in port-Hamiltonian form that are dissipative with respect to a quadratic supply rate, being the total energy the storage function. More precisely, general conditions that a linear regulator has to satisfy to have, at first, a well-posed and, secondly, an exponentially stable closed-loop system are presented. The methodology is illustrated with reference to two specific stabilisation scenarios, namely when the (distributed parameter) plant is in impedance or in scattering form. Moreover, it is also shown how these techniques can be employed in the analysis of more general systems that are described by coupled partial and ordinary differential equations. In particular, the repetitive control scheme is studied, and conditions on the (finite dimensional) linear plant to have asymptotic tracking of generic periodic reference signals are determined
    corecore