222 research outputs found

    Dissipative Stabilization of Linear Systems with Time-Varying General Distributed Delays (Complete Version)

    Full text link
    New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovski\u{i} functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.Comment: Accepted by Automatic

    Quantum Feedback Networks and Control: A Brief Survey

    Get PDF
    The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control. A quantum feedback network (QFN) is an interconnected system consisting of open quantum systems linked by free fields and/or direct physical couplings. Basic network constructs, including series connections as well as feedback loops, are discussed. The quantum feedback network theory provides a natural framework for analysis and design. Basic properties such as dissipation, stability, passivity and gain of open quantum systems are discussed. Control system design is also discussed, primarily in the context of open linear quantum stochastic systems. The issue of physical realizability is discussed, and explicit criteria for stability, positive real lemma, and bounded real lemma are presented. Finally for linear quantum systems, coherent H∞H^\infty and LQG control are described.Comment: 29 pages, 11 figures. A new reference has been adde

    From Small-Gain Theory to Compositional Construction of Barrier Certificates for Large-Scale Stochastic Systems

    Full text link
    This paper is concerned with a compositional approach for the construction of control barrier certificates for large-scale interconnected stochastic systems while synthesizing hybrid controllers against high-level logic properties. Our proposed methodology involves decomposition of interconnected systems into smaller subsystems and leverages the notion of control sub-barrier certificates of subsystems, enabling one to construct control barrier certificates of interconnected systems by employing some max⁑\max-type small-gain conditions. The main goal is to synthesize hybrid controllers enforcing complex logic properties including the ones represented by the accepting language of deterministic finite automata (DFA), while providing probabilistic guarantees on the satisfaction of given specifications in bounded-time horizons. To do so, we propose a systematic approach to first decompose high-level specifications into simple reachability tasks by utilizing automata corresponding to the complement of specifications. We then construct control sub-barrier certificates and synthesize local controllers for those simpler tasks and combine them to obtain a hybrid controller that ensures satisfaction of the complex specification with some lower-bound on the probability of satisfaction. To compute control sub-barrier certificates and corresponding local controllers, we provide two systematic approaches based on sum-of-squares (SOS) optimization program and counter-example guided inductive synthesis (CEGIS) framework. We finally apply our proposed techniques to two physical case studies
    • …
    corecore