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The purpose of this paper is to provide a brief review of some recent developments in quantum feedback networks and control. A
quantum feedback network (QFN) is an interconnected system consisting of open quantum systems linked by free fields and/or direct
physical couplings. Basic network constructs, including series connections as well as feedback loops, are discussed. The quantum
feedback network theory provides a natural framework for analysis and design. Basic properties such as dissipation, stability, passivity
and gain of open quantum systems are discussed. Control system design is also discussed, primarily in the context of open linear
quantum stochastic systems. The issue of physical realizability is discussed, and explicit criteria for stability, positive real lemma, and
bounded real lemma are presented. Finally for linear quantum systems, coherent H∞ and LQG control are described.
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1 Introduction

Quantum technology is an interdisciplinary field that stud-
ies how to engineer devices by exploiting their quantum fea-
tures. Regarded as the second quantum revolution, quantum
technology has many potential far-reaching applications [1].
For example, Shor [2] presented a quantum algorithm which
can offer exponential speedup over classical algorithms for
factoring large integers into prime numbers. Bennett et al.
[3] proposed a quantum teleportation protocol where an un-
known quantum state can be disembodiedly transported to a
desired receiver. Atomic lasers hold promising applications
in nanotechnology such as atom lithography, atom optics and
precision measurement [4]. Quantum technology (including
quantum information technology) has more powerful capa-
bility than traditional technology and is one of the main fo-
cuses of scientists. Nevertheless, many challenging problems
require to be systematically presented and successfully ad-
dressed in order to foster wider real-world applications of
quantum technology in our life [1].
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Recent years have seen a rapid growth of quantum feed-
back control theory [5–10]. If measurement is involved
in the feedback loop, the feedback mechanism is conven-
tionally called measurement-based feedback, e.g., [10–17].
Measurement-based feedback control of quantum systems is
important in a number of areas of quantum technology, in-
cluding quantum optical systems, nano-mechanical systems,
and circuit QED systems. In measurement-based feedback
control, the plant is a quantum system, while the controller
is a classical (namely non-quantum) system. The classical
controller processes the outcomes of measurement of an ob-
servable of the quantum system (e.g. the number of photons
of an optical field) to determine the classical control actions
(e.g. magnetic field) that are applied to control the behavior
of the quantum system. Classical controllers are typically im-
plemented using standard analog or digital electronics. How-
ever, for quantum systems that have bandwidth much higher
than that of conventional electronics, an important practical
issue for the implementation of measurement-based feedback
control systems is the relatively slow speed of standard classi-
cal electronics, since the feedback system will not work prop-
erly unless the controller is fast enough.
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Alternatively, quantum components may be connected to
each other without any measurement devices in the inter-
connections. For example, two optical cavities can be con-
nected via electromagnetic fields (light beams). Such feed-
back mechanism is referred to as coherent feedback as orig-
inally proposed in [18–23]. The interconnection of a quan-
tum plant and a quantum controller produces a fully quantum
system; quantum information flows in this coherent feedback
network, thus coherence is preserved in the whole quantum
network. Moreover, a coherent feedback controller may have
the similar time scale as the plant, and likely would be much
faster than classical signal processing. Finally, it is becoming
feasible to implement quantum networks in semiconductor
materials, for example, photonic crystals are periodic opti-
cal nanostructures that are designed to affect the motion of
photons in a similar way that periodicity of a semiconductor
crystal affects the motion of electrons, and it may be desir-
able to implement control networks on the same chip (rather
than interfacing to a separate system) [24–28]. For several
reasons, then, it is desirable to implement controllers using
the same or similar (e.g. in time scales) hardware as plants.
Therefore, it might be advantageous to design coherent feed-
back networks.

Recently there is a growing interest in the study of co-
herent quantum feedback networks and control. For exam-
ple, quantum feedback network structure has been studied
[19, 22, 29–33]. The problem of H∞ control has been dis-
cussed [33–36]. The problem of coherent LQG control has
been investigated [33, 37]. The issue of physical realizability
has been analyzed [33, 34, 38, 39]. The problem of network
synthesis of quantum systems via optical devices have been
studied [40–43]. There are also many papers investigating
the applications of coherent feedback control, such as intra-
cavity squeezing [19], optical field squeezing [23, 44, 45],
H∞ control [35], entanglement enhancement [46], polariza-
tion squeezing [47, 48], error correction in quantum memo-
ries [49, 50], optical switches [51], nonlinear coherent feed-
back control on chip [52], and photon pulse shaping [53].

The paper is organized as follows. Section 2 discusses
closed quantum systems, in particular, closed quantum har-
monic oscillators. Section 3 introduces Boson field and a
basic model structure of open quantum systems. Section 4
discusses mechanisms by which open quantum systems in-
terconnect. Section 5 presents results for quantum dissipative
systems. Section 6 focuses on linear quantum systems. Sec-
tion 7 discusses fundamental characteristics of linear quan-
tum systems. Section 8 presents H∞ and LQG controller syn-
thesis of linear quantum systems. Section 9 touches on how
linear quantum systems can be realized by means of optical
devices. Section 10 concludes the paper.

Notation. i is the imaginary unit. δ jk is Kronecker delta,
and δ(t) is Dirac delta. Given a column vector of operators or

complex numbers x = [ x1 · · · xm ]T where m is a posi-

tive integer, define x# = [ x∗1 · · · x∗m ]T , where the asterisk
∗ indicates Hilbert space adjoint or complex conjugation. De-
note x† = (x#)T = [ x∗1 · · · x∗m ]. Furthermore, define the

doubled-up column vector to be x̆ = [ xT
(
x#

)T
]T . The

matrix case can be defined analogously. Given two matri-
ces U, V ∈ Cr×k, a doubled-up matrix Δ (U,V) is defined as
Δ (U,V) := [ U V; V# U# ]. Let In be an identity ma-
trix. Define Jn = diag(In,−In) and Θn = [0 In; − In 0]
(The subscript “n” is always omitted). Then for a matrix
X ∈ C2n×2m, define X� := JmX†Jn. Finally we also use I
to denote identity operators.

2 Closed systems

In this paper, closed systems means systems that have no in-
teractions with other systems and/or environment. In this sec-
tion starting from the fundamental Schrodinger’s equation for
closed quantum systems, we introduce closed quantum har-
monic oscillators which in later sections will be allowed to
interact with other systems or electromagnetic fields to pro-
duce open quantum systems.

Given a closed quantum system with Hamiltonian H, we
have the following Schrodinger’s equation1)

d
dt

U(t) = −iHU(t), U(0) = I. (1)

Clearly, U(t) is a unitary operator. The system variables
X(t) evolve according to X(t) = U∗(t)XU(t) with initial point
X(0) = X, which satisfy, the Heisenberg picture,

d
dt

X(t) = −i[X(t),H(t)]. (2)

Note that for closed systems H(t) ≡ H for all t due to preser-
vation of energy.

Alternatively, the system density operator ρ(t) =

U(t)ρU∗(t) with ρ(0) = ρ satisfies, the Schrodinger picture,

d
dt
ρ(t) = −i[H, ρ(t)]. (3)

2.1 Closed quantum harmonic oscillators

An example of closed quantum harmonic oscillators is an op-
tical cavity with H = ωa∗a (upon scaling), shown as Figure 1,
where ω is the resonant frequency, and the annihilation oper-
ator a is the cavity mode (an operator on a Hilbert space). The
adjoint operator a∗ of a is called the creation operator. a and
a∗ satisfy the canonical commutation relation [a(t), a∗(t)] = 1
for all t � 0. Finally by eq. (2),

1) The reduced Planck constant h̄ is omitted throughout the paper.
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a

Figure 1 Closed optical cavity. Black rectangles denote fully reflecting
mirrors at cavity resonant frequency.

d
dt

a(t) = −iωa(t), a(0) = a. (4)

Therefore a(t) = e−iωta — an oscillator.
In general, let G be a closed quantum system of intercon-

nection of n quantum harmonic oscillators. The behavior of
G is determined by the Hamiltonian

H0 =
1
2

ă†
⎡⎢⎢⎢⎢⎢⎢⎣
Ω− Ω+

Ω#
+ Ω#−

⎤⎥⎥⎥⎥⎥⎥⎦ ă, (5)

where Ω− and Ω+ are respectively Cn×n matrices satisfying
Ω− = Ω†− and Ω+ = ΩT

+. By eq. (2),

ȧ j(t) = −i[a j(t),H0(t)], a j(0) = a j, ( j = 1, . . .n).

In a compact form we have the following linear differential
equations:

˙̆a(t) = A0ă(t) (6)

with initial condition ă(0) = ă, where

A0 = −Δ(iΩ−, iΩ+). (7)

3 Quantum fields and open quantum systems

3.1 Boson fields

The m-channel Boson field b(t) = [b1(t), . . . bm(t)]T are oper-
ators on a Fock space F [54], whose components satisfy the
singular commutation relations

[b j(t), b
∗
k(t′)] = δ jkδ(t − t′), [b j(t), bk(t′)] = 0,

[b∗j(t), b
∗
k(t′)] = 0, ( j, k = 1, . . .m). (8)

The operators b j(t) may be regarded as quantum stochastic
processes, see, eg. [55, Chapter 5]; when the field is in the
vacuum state, namely absolutely zero temperature and com-
pletely dark, they are called standard quantum white noise
(that is, M = N = 0 in [55, eq. (10.2.38)]). The integrated
processes B j(t) =

∫ t

0
b j(τ)dτ are quantum Wiener processes

with Ito increments dB j(t) = B j(t + dt) − B j(t), ( j = 1, . . .m).
There might exist scattering between channels, which is

modeled by the gauge process:

Λ(t) =
∫ t

0
b#(τ)bT (τ)dτ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ11(t) · · · Λ1m(t)
...

...
...

Λm1(t) · · · Λmm(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

with operator entriesΛ jk on the Fock space F . Finally in this
paper it is assumed that these quantum stochastic processes

are canonical, that is, they have the following non-zero Ito
products:

dB j(t)dB∗k(t) = δ jkdt, dΛ jkdB∗l (t) = δkldB∗j(t),
dB j(t)dΛkl(t) = δ jkdBl(t),

dΛ jk(t)dΛlm(t) = δkldΛ jm(t), ( j, k, l = 1, . . .m).

(10)

3.2 Open quantum systems in the (S, L, H) parametriza-
tion

When a quantum system G is driven by a Boson field F ,
we have an open quantum system. For example, if we al-
low the closed optical cavity in Figure 1 to interact with a
Boson field, we end up with an open optical cavity (Figure
2). While the mutual influence between the system and field
may be described rigorously from first principles in terms of
an interaction Hamiltonian, it is much more convenient to use
an idealized quantum noise model which is valid under suit-
able rotating wave and Markovian assumptions, as in many
situations in quantum optics, e.g. cascaded open systems,
see [18, 22, 56, 57] for detail. Let AG and AF be physical
variable spaces of the system G and the field F respectively,
then the physical variable space for the composite system is
the tensor product spaceAG ⊗ AF .

Open quantum systems G studied in this paper can be pa-
rameterized by a triple (S , L,H) [30, 58]. Here, S is a scat-
tering matrix with entries in the system spaceAG, L ∈ AG is
an coupling operator that provides interface between systems
and fields, H ∈ AG is the internal Hamiltonian of quantum
system G.

With these parameters, and assuming that the input field
is canonical, that is, eq. (10) holds, we have the follow-
ing Schrodinger’s equation for open quantum systems (in Ito
form):

dU(t) =
{
tr[(S − Im)dΛT ] + dB†(t)L − L†S dB(t)

−
(
iH +

1
2

L†L
)
dt

}
U(t), U(0) = I. (11)

Note that for a closed system, eq. (11) becomes the familiar
Schrodinger’s equation (1). This, together with the evolution
X(t) = U(t)∗XU(t), yields the following quantum stochastic
differential equations (QSDEs), in Ito form:

dX(t) = (−i[X(t),H(t)]+ LL(t)(X(t)))dt

+ dB†(t)S †(t)[X(t), L(t)] + [L†(t), X(t)]S (t)dB(t)

+ tr[(S †(t)X(t)S (t) − X(t))dΛT (t)], X(0) = X,
(12)

a

b

bout

Figure 2 Open optical cavity. White rectangle denotes a partially transmit-
ting mirror at cavity resonant frequency.
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where the Lindblad operator LL is

LL(X) :=
1
2

L†[X, L] +
1
2

[L†, X]L. (13)

For later use, we define a generator operator

GG(X) := −i[X,H] +LL(X). (14)

The output field Bout(t) = U∗(t)B(t)U(t) satisfies

dBout(t) = L(t)dt + S (t)dB(t). (15)

The gauge process of the output field Λout(t) :=
∫ t

0
b#

out(s)
bT

out(s)ds = U∗(t)Λ(t)U(t) satisfies

dΛout(t) = S #(t)dΛ(t)S T (t) + S #(t)dB#(t)LT (t)

+ L#(t)dBT (t)S T (t) + L#(t)LT (t)dt. (16)

Finally, in the Schrodinger picture, the reduced system den-
sity operator ρ̂ satisfies the master equation, c.f. [55, Sec.
11.2.5],

d
dt
ρ̂(t) = −i[H, ρ̂(t)] + L′L(ρ̂(t)), (17)

where the operatorL′L is defined to be

L′L(ρ̂) := LT ρ̂L# − 1
2

L†Lρ̂ − 1
2
ρ̂L†L. (18)

Remark 1. Clearly, open quantum systems presented in
this section are quantum Markov processes.

3.3 Examples

(i) Optical cavity. The one degree of freedom closed quan-
tum harmonic oscillator in Figure 1 can be described by
(−,−, ωa∗a), where the symbol “−” means that there is nei-
ther scattering nor coupling. The open optical cavity in Fig-
ure 2 may be described by (1,

√
κa, ωa∗a), where κ is cou-

pling coefficient and ω is the resonant frequency. According
to eqs. (12)–(15),

da(t) = −(iω +
κ

2
)a(t)dt − √κdB(t), a(0) = a, (19)

dBout(t) =
√
κa(t)dt + dB(t). (20)

(ii) Two-level systems. Given a two-level system param-
eterized by

S − = 1, L =
√
κσ−, H =

ω

2
σz,

with Pauli matrices

σz =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ , σ− =
⎡⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , σ+ =
⎡⎢⎢⎢⎢⎢⎢⎣

0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

σx =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , σy =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −i

i 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (21)

by eq. (11) the unitary operator U(t) evolves according to

dU(t) =
{√
κdB∗(t)σ− −

√
κσ+dB(t) − κ

4
(σz + 1)dt

− i
ω

2
σzdt

}
U(t), U(0) = I. (22)

By eqs. (12) and (13)

dσx(t) = −
( κ
2
σx(t) + ωσy(t)

)
dt +

√
κdB∗(t)σz(t)

+
√
κσz(t)dB(t), (23)

dσy(t) = −
(
κ

2
σy(t) − ωσx(t)

)
dt − i

√
κdB∗(t)σz(t)

+ i
√
κσz(t)dB(t), (24)

dσz(t) = −κ(I + σz(t))dt −
√
κ

2
(σx(t) − iσy(t))dB∗(t)

−
√
κ

2
(σx(t) + iσy(t))dB(t). (25)

On the other hand, the output field is

dBout(t) =
√
κσ−(t)dt + dB(t), (26)

dΛout(t) = dΛ(t) +
√
κdB∗(t)σ−(t) +

√
κσ+(t)dB(t)

+
κ

2
(σz + 1)dt. (27)

Remark 2. It can be seen from eqs. (23)–(25) that two-
level systems are nonlinear quantum systems.

4 Interconnection

In this section we discuss how two quantum systems can be
connected to each other. More specifically we discuss con-
catenation product, series product, direct coupling, and linear
fractional transform. Several examples from the literature are
used to illustrate these interconnections. Propagation delays
are ignored in interconnections. Discussions of influence of
propagation delays on system performance can be found in,
e.g. [45].

4.1 Concatenation product

Given two open quantum systems G1 = (S 1, L1,H1) and
G2 = (S 2, L2,H2), their concatenation product (Figure 3), is
defined to be

G1 �G2 :=

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
S 1 0

0 S 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

L1

L2

⎤⎥⎥⎥⎥⎥⎥⎦ ,H1 + H2

⎞⎟⎟⎟⎟⎟⎟⎠ . (28)

b1,out

b2,out G2

G1
b1

b2

Figure 3 Concatenation product G1 �G2.
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4.2 Series product

Given two open quantum systems G1 = (S 1, L1,H1) and
G2 = (S 2, L2,H2) with the same number of input, their se-
ries product (Figure 4), is defined to be

G2 	G1 :=
(
S 2S 1, L2 + S 2L1,H1 + H2 +

1
2i

(L†2S 2L1

− L†1S †2L2)
)
. (29)

Theorem 1 (Principle of Series Connections, [30, Theorem
5.5]). The parameters of the composite system G2 ← G1,
obtained from G1 �G2 when the output of G1 is used as input
of G2, is given by the series product G2 	G1.

4.3 Direct coupling

In quantum mechanics, two independent systems G1 and G2

may interact by exchanging energy. This energy exchange
may be described by an interaction Hamiltonian Hint of the
form Hint = X†1 X2 + X†2 X1, where X1 ∈ AG1 and X2 ∈ AG2 ;
see, e.g. [19], [21], [33]. In this case, we say the two systems
G1 and G2 are directly coupled, and the composite system is
denoted G1 
	 G2 (Figure 5).

4.4 Linear fractional transform

Let G in Figure 6 be of the form

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
S 11 S 12

S 21 S 22

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

L1

L2

⎤⎥⎥⎥⎥⎥⎥⎦ ,H
⎞⎟⎟⎟⎟⎟⎟⎠.

Assume that (I − S 22)−1 exists. Then the conventional linear
fractional transform yields a feedback network

F(G) = (S 11 + S 12(I − S 22)−1S 21, L1 + S 12(I − S 22)−1L2,H

+ Im{L†1S 12(I−S 22)−1L2}+Im{L†2S 22(I − S 22)−1L2})
from input b to output bout.

G2 G1
bbout

Figure 4 Series product G2 	G1.

G2

G1

Hint

Figure 5 Directly coupled system G1 
	 G2.

bbout
G

Figure 6 Linear fractional transformation F(G).

4.5 Examples

In this section examples in the literature are used to demon-
strate the usefulness of the parametrization (S , L,H) and in-
terconnections. More examples can be found in [19, 30, 51,
59]. For the convenience of the readers to refer to the original
papers we use symbols in those original papers.

Example 1 ([57]). In [57] quantum trajectory theory is
formulated for interaction of open quantum systems via se-
ries product (Figure 4). Given two open systems G1 =

(1, LA,HA),G2 = (1, LB,HB) with LA =
√

2κAaA, LB =√
2κBaB. Here κA and κB are coupling constants and aA and aB

are annihilation operators for systems G1 and G2 respectively.
The series product yields

G2 � G1 = (1,
√

2κAaA +
√

2κBaB,HA + HB

+ i
√
κAκB(a∗AaB − a∗BaA)). (30)

Identifying HA +HB + i
√
κAκB(a∗AaB − a∗BaA)) with ĤS in [57,

eq. (7)] and
√

2κAaA +
√

2κBaB with Ĉ in [57, eq. (9)] re-
spectively, eq. (17) re-produces the master equation [57, eq.
(8)].

Example 2 ([56]). In [56] quantum Langevin equations
and a quantum master equation were derived for a cascade of
two two-level systems (Figure 7). The two two-level systems
G1 and G2 in Figure 7 are respectively

G1 = (1,
√
γ1σ

−
1 , 0) � ((1,

√
η1σ

−
1 , 0) � (1, E, 0)),

G2 = (1,
√
η2σ

−
2 , 0) � (1,

√
γ2σ

−
2 , 0).

Here, γ1 and η1 are coupling constants for system G1, E is
an incident coherent electric drive (not an operator) of G1. γ1

and η1 are coupling constants for system G2. σ− is defined in
eq. (21):

σ−1 = σ
−
2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Let G be a series product G = (G2 � (1, 0, 0)) � ((1, 0, 0) �
G1). With these, according to eq. (17), [56, eq. (14)] can be
re-produced (Notice the fact that in the interaction picture
Hsys = 0 is used).

Example 3 ([47, 48]). A scheme is proposed in [47] to
produce continuous-wave fields or pulses of polarization-
squeezed light by passing classical, linearly polarized laser
light through an atomic sample twice; that is, the field out-
put of the first pass is fed back to the atomic sample again

G1

G2

E

Figure 7 A re-draw of [56, Figure 1]. For clarity, coupling operators√
γ1σ

−
1 ,
√
η1σ

−
1 ,
√
γ1σ

−
2 ,
√
η2σ

−
1 are shown explicitly. E is a coherent elec-

tric drive of G1.
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so as to generate polarization-squeezed light. This scheme is
confirmed and extended in [48]. The atomic sample can be
modeled as an open quantum system G = G1 �G2 with

G1 =

(
1,

1√
2
αp, 0

)
, G2 =

(
1,− i√

2
αx, 0

)
.

Here α is a real constant, and x, p are position and momentum
operators respectively, c.f. [48, eqs. (A1)–(A2)]. Double-
pass of an electromagnetic field through the atomic sample
introduces a series product, that is the overall quantum sys-
tem is

G2 � G1 = (1,
α

2
(p − ix),

α2

4
(xp + px)),

whose Schrodinger equation is [48, eq. (1)].

Example 4 ([33]). Given two closed quantum Harmonic
oscillators G1 and G2 as studied in Section 2.1, we take the
interaction Hamiltonian Hint in Figure 5 to be

Hint =
1
2

(
ă(1)†Ξ†ă(2) + ă(2)†Ξă(1)

)
, (31)

where Ξ = Δ(iK−, iK+) for matrices K−,K+ ∈ Cn2×n1 . The
Hamiltonian for the directly coupled system G1 
	 G2 is

H = H0,1 + Hint + H0,2, (32)

where H0,k =
1
2 ă(k)†Δ(Ω(k)

− ,Ω
(k)
+ )ă(k) is the self-Hamiltonian

for Gk, and Hint is given by eq. (31). It is easy to show that
system operators ă( j)(t) = U∗(t)ă( j)U(t) ( j = 1, 2) satisfy the
following linear differential equations, in Stratonovich form:

˙̆a(1)(t) = A0,1ă(1)(t) + B12ă(2)(t), ă(1)(0) = ă(1),

˙̆a(2)(t) = A0,2ă(2)(t) + B21ă(1)(t), ă(2)(0) = ă(2),

where

A0, j = −Δ(iΩ( j)
− , iΩ

( j)
+ ),

B12 = −Δ(K−,K+)�,

B21 = −B�12, ( j = 1, 2).

5 Quantum dissipative systems

Open systems are systems that interact with other systems
and/or their environment. In classical control theory, a gen-
eral framework for the stability of open systems has been de-
veloped [60–63]. This classical theory abstracts energy con-
cepts and provides fundamental relations for stability in terms
of generalized energy inequalities. In this section we briefly
review dissipation theory for open quantum systems [31]. In
Figure 8 the open quantum system P = (S , L,H) is the plant
of interest whose space of variables is denotedAP. The other
open quantum system W = (R,w,D) is an external system or
the environment, whose space of variables is denotedAex. W
is called an exosystem. Moreover, we allow W to vary in a
class of such exosystemsW.

W

P

Figure 8 Plant-exosystem network P ∧W.

5.1 Dissipativity, stability, passivity, gain

In this section we present concepts of dissipativity, stability,
passivity and gain. As with the classical case, criteria of sta-
bility, passivity and gain follow those of dissipativity.

The following assumption is used in the sequel.

Assumption A1. The inputs to the composite system P∧W
are all canonical vacuum fields, c.f. Section 3.1.

Let rP(W) be a self-adjoint operator in the composite plant-
exosystem space AP ⊗ Aex. rP(W) is usually called supply
rate. We have the following definition of dissipativity for
open quantum systems P.

Definition 1 (Dissipation, [31, Sec. III-A]). The plant P is
said to be dissipative with supply rate rP(W) with respect to
a class of exosystemsW if there exists a non-negative plant
observable V ∈ AP, called storage function, such that the
dissipation inequality

E0 [V(t) − V(0)]︸��������������︷︷��������������︸
stored energy

�
∫ t

0
E0 [rP(W)(s)] ds

︸�������������������︷︷�������������������︸
supplied energy

(33)

holds for all W ∈ W and all t � 0, where E0 is vacuum ex-
pectation [54, Chapter 26]. In particular, when “=” in (33)
holds for all W ∈ W and all t � 0, P is called lossless.

The combination of Definition 5.1 and the following prop-
erty of vacuum expectation [54, Proposition 26.6]

Eτ[V(t)] = V(τ) +
∫ t

τ

E0[GP∧W (V(r))]dr, (34)

yields an infinitesimal version (namely independent of the
time variable) of the dissipation inequality (33).

Theorem 2 (Dissipation, [31, Theorem 3.1]). Pertaining
to Figure 8, the plant P is dissipative with a supply rate rP(W)
with respect to a class of exosystemsW if and only if there
exists a non-negative plant observable V ∈ AP such that

GP∧W (V) − rP(W) � 0 (35)

holds for all W ∈ W.
Given a quantum system P, assume it has indirect and/or

direct connections to external systems and/or its environment.
With slight abuse of notation we still call P an open quantum
system. LetWu denote the class of all the quantum systems
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that can be connected to P, directly or indirectly. The follow-
ing result shows that P is lossless with respect toWu.

Theorem 3 ( [31, Theorem 3.3]). Pertaining to Figure 8,
for any given storage function V0, which is a non-negative ob-
servable inAP, the open quantum system P is lossless with a
supply rate

r0(W) = GP∧W (V0) (36)

with respect toWu.
Theorem 3 shows that any open quantum system is dissi-

pative in some sense.
Next we study stability of open quantum systems which is

characterized in terms of the evolution of mean values.

Definition 2 (Exponential stability, [31, Sec. III-B]). An
open quantum system P is said to be exponentially stable if
there exists a non-negative observable V ∈ AP, scalars c > 0
and λ � 0 such that

〈V(t)〉 � e−ct〈V〉 + λ
c

(37)

holds for any plant state and all time t � 0. Moreover, if
λ = 0, then limt→∞〈V(t)〉 = 0.

The combination of eq. (34) and Definition 5.1 gives the
following stability result for open quantum systems P.

Theorem 4 (Stability, [31, Lemma 3.4]). If there exists a
nonnegative observable V ∈ AP, scalars c > 0 and λ � 0
such that

GP(V) + cV � λ,

then the open quantum system P is exponentially stable.
Moreover, if λ = 0, then limt→∞〈V(t)〉 = 0.

In what follows we focus on the series product of P and W
with additional direct coupling (Figure 9). That is, the com-
posite system is

P ∧W = (P 	W) � (−,−,Hint),

where P = (I, L,H), W = (I,w, 0), Hint = −i(M†v − v†M)
with w, v ∈ Aex and M ∈ AP. With slight abuse of notation,
we write

P ∧W = P 	W,

where W = (I,w,−i(M†v − v†M)). That is, direct coupling is
absorbed into the exosystem W.

Let V ∈ AP be a non-negative observable. Assume that
S = I. By eq. (14)

GP∧W (V) = GP(V) +Lw(V) + [w† v†]Z + Z†
⎡⎢⎢⎢⎢⎢⎢⎣

w

v

⎤⎥⎥⎥⎥⎥⎥⎦

+ [V, v†]M − M†[V, v], (38)

WP

Hint

Figure 9 Series product plus direct coupling.

where Z =

⎡⎢⎢⎢⎢⎢⎢⎣V,
⎡⎢⎢⎢⎢⎢⎢⎣

L

M

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦.

For fixed M ∈ AP, define a class of exosystems

W1 = {W = (I,w,−i(M†v − v†M) : w, v commute withAP}.
(39)

Then we have the following definition of passivity for the
system P in Figure 9.

Definition 3 (Passivity, [31, Sec. III-C]). Given M ∈ AP,
the plant P = (I, L,H) is said to be passive with respect to the
class of exosystems W1 in eq. (39) if it is dissipative with
the supply rate

rP(W) = −N†N + [w† v†]Z + Z†
⎡⎢⎢⎢⎢⎢⎢⎣

w

v

⎤⎥⎥⎥⎥⎥⎥⎦ + λ (40)

for some non-negative real number λ, and N, Z ∈ AP. P is
said to be strictly passive if N†N is strictly positive.

The combination of Definition 5.1, Theorem 5.1 and eq.
(38) gives the following passivity result.

Theorem 5 (Positive Real Lemma, [31, Theorem 3.6]). A
plant P = (I, L,H) is passive with respect to the class of ex-
osystems W1 in eq. (39) if and only if there exists a non-
negative observable V ∈ AP, an operator N ∈ AP, and a
non-negative real number λ such that

GP(V) + N†N − λ � 0, (41)

Z =

⎡⎢⎢⎢⎢⎢⎢⎣V,
⎡⎢⎢⎢⎢⎢⎢⎣

L

M

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦ . (42)

As with the classical case, strict passivity implies stability.

Theorem 6. The open quantum system P is exponentially
stable if it is strictly passive with respect to the exosystem
W = (I, 0, 0).

The bounded real lemma is used to determine L2 gain of an
open system, and in conjunction with the small gain theorem,
can be used for robust stability analysis and design. In what
follows we discuss L2 gain of open quantum systems.

Define a class of exosystems

W2 = {W = (I,w, 0) : w commutes withAP}. (43)

Note that in this case there is no direct coupling.

Definition 4 (L2 gain, [31, Sec. III-C]). The plant P =
(I, L,H) is said to have L2 gain g > 0 with respect to the
class of exosystems W2 in eq. (43) if it is dissipative with
the supply rate

rP(W) = g2w†w − (N + Zw)†(N + Zw) + λ (44)

for some non-negative real number λ, and N, Z ∈ AP.
The combination of Definition 5.1 and Theorem 5.1 gives

the following result.

Theorem 7 (Bounded Real Lemma, [31, Theorem 3.7]). A
plant P = (I, L,H) has L2 gain g > 0 with respect to W2 if
and only if there exists a non-negative plant variable V ∈ AP,
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an operator N ∈ AP, and a non-negative real number λ such
that

Γ = g2 − Z†Z � 0 (45)

and

GP(V)+N†N−w†Γw+w†([V, L]+Z†N)+([V, L]+Z†N)†w−λ�0
(46)

for all w ∈ Aex. If Γ−1 exists, then plant P = (I, L,H) has
gain g > 0 with respect toW2 if and only if

GP(V)+N†N+([V, L]+Z†N)†Γ−1([V, L]+Z†N)−λ � 0 (47)

for all w ∈ Aex. In the latter case, the plant P is strictly
bounded real.

5.2 Example

The following example illustrates the above results for stabil-
ity, passivity, and L2 gain. Consider a two-level system P and
an exosystem W of the form

P = (1,
√
γσ+,

ω

2
σz), W = (1,w, 0),

where w commutes with AP. Assume there is no direct cou-
pling between P and W. Choose a storage function V0 =
1
2 (I − σz) = σ−σ+ and a supply rate

rP(W) = GP∧W (V0) = GP(V0) + w∗Z + Z∗w, (48)

where Z = [V0,
√
γσ+] = −√γσ+. Clearly, GP(V0) = −γV0.

As a result, eq. (48) becomes

rP(W) = −γV0 − √γ(w∗σ+ + σ−w)

= −(
√
γσ+ + w)∗(

√
γσ+ + w) + w∗w.

Choose N =
√
γσ+ and Z = −N, by Theorem 5 we see

that the system is passive. Choose N =
√
γσ+ and Z = 1,

by Theorem 7 we find that the system has L2 gain 1. Finally,
when W = (1, 0, 0), rP(W) = rP(I) = −γV0, then by Theorem
4 the system P is exponentially stable.

6 Linear quantum systems

Linear quantum systems are those for which certain conju-
gate operators evolve linearly, the optical cavity being a basic
example, c.f. Section 3.3(i). Linear systems have the ad-
vantage that they are much more computationally tractable
than general nonlinear systems, and indeed, powerful meth-
ods from linear algebra may be exploited.

6.1 General model

Open linear quantum systems discussed in this paper are open
quantum harmonic oscillators with direct and indirect cou-
plings to other quantum systems and/or external fields. In this
section we present a general model for an open linear quan-
tum system G Figure 10, based on the ingredients discussed
in the previous sections. Here, G is an open quantum system
with parametrization (I, L,H0), where L = C−a + C+a# with
C−,C+ being constant complex-valued matrices. The internal
Hamiltonian H0 is that given in eq. (5). Moreover, G is al-
lowed to coupled directly to another (independent) quantum
system Wd via an interaction Hamiltonian

Hint =
1
2

(
ă†Ξ†v̆ + v̆†Ξă

)
, (49)

where Ξ = Δ(iK−, iK+). Our interest is in the influence
of external systems/fields on the given system G. The per-
formance characteristics of interest are encoded in a perfor-
mance variable2) z.

Building upon the discussions in previous sections, the
equations for G (including direct coupling, indirect coupling
and performance variable) are

˙̆a(t) = Aă(t) + Bdv̆(t) + B f w̆(t) + B f b̆(t), ă(0) = ă, (50)

b̆out(t) = C f ă(t) + w̆(t) + b̆(t), (51)

z̆(t) = Cpă(t) + Dpdv̆(t) + Dp f w̆(t). (52)

The complex matrices in eqs. (50) and (51) are given by

A = −1
2

C�f C f − Δ (iΩ−, iΩ+) , Bd = −Δ(K−,K+)�, (53)

C f = Δ(C−,C+), B f = −C�f . (54)

The matrices A and B f are specified by the parameters Ω±,
and C±. In eqs. (50) and (51), b(t) and bout(t) are respec-
tively, the input and output fields for G. The term v in eq.
(50) is an exogenous quantity associated with Wd with which
G is directly coupled via the interaction Hamiltonian Hint, c.f.
Section 4.5.

bout

Wd

WfG
z

v

bb+w

Figure 10 General model.

2) A performance variable is chosen to capture control performance, such as an error quantity, and so may involve external variables, like a reference signal.
Performance variables need not have anything to do with the output quantities associated with direct or indirect couplings to other systems, c.f. Sections 7

and 8.
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The term w in eq. (50) is another exogenous quantity as-
sociated with another (independent) system W f with which
G is indirectly coupled through a series product. W f may be
a quantum system of the form (1,w, 0) where w is an oper-
ator on some Fock space, it can also denote modulation so
that w coherent drive modulates the vacuum field b c.f. E
in Example 2 of Section 4.5. Because of the assumed inde-
pendence, w and v commute with the mode operators a j, a∗j
for G. While v and w are arbitrary external variables, the
time evolutions v(t) and w(t) (when it is an operator) are de-
termined by the evolution of the overall composite system.
The matrices Cp, Dpd and Dp f specify the performance vari-
able z. In brief, system G is specified by the parameters
G = (Ω±,C±,K±,Cp,Dpd,Dp f ). Of these, Ω±, C± and K±
are physical parameters.

In particular, when all the plus terms are zero, namely
C+ = 0,Ω+ = 0,K+ = 0, all matrices A, B f , Bd,C f are block
diagonal, system (50)–(51) is equivalent to

ȧ(t) = −(iΩ− +
1
2

C†−C−)a(t) − K†−v(t) −C†−w(t)

− C†−b(t), a(0) = a, (55)

bout(t) = C−a(t) + b(t), (56)

c.f. optical cavity (19)–(20). It can be readily shown that sys-
tem (55)–(56) is passive. Passive systems have been studied
in, e.g. [33, 36, 39, 43, 53].

6.2 Physical realizability

It can be readily verified that the following relations for sys-
tem matrices (53)–(54) hold

JnA + A†Jn +C†f JmC f = 0, (57)

B f = −C�f , (58)

Bd = −Δ(K−,K+)�. (59)

Eq. (57) characterizes preservation of the canonical commu-
tation relations, namely

[ă j(t), ă∗k(t)] = [ă j, ă
∗
k] = (Jn) jk, ∀t � 0, ( j, k = 1, . . .n).

(60)
Eq. (58) reflects the input and output relation, while eq. (59)
is for direct coupling.

The relations (57)–(59) are called physical realizability re-
lations, which generalize results in [34, Theorem 3.4], [38],
[39, Theorem 5.1], [38, Theorem 3]. These conditions guar-
antee that the equations correspond to a physical system.

6.3 Quadrature representation

So far, annihilation-creation representation has been used to
represent linear quantum systems in terms of the notation
ă = [aT a†]T , the resulting matrices are complex-valued ma-
trices. In this section we introduce an alternative representa-
tion, the so-called quadrature representation, which leads to
equations with real-valued matrices.

Define the unitary matrix

Λ =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎣
I I

−iI iI

⎤⎥⎥⎥⎥⎥⎥⎦ (61)

and the vector of self-adjoint operators

ã =

⎡⎢⎢⎢⎢⎢⎢⎣
q

p

⎤⎥⎥⎥⎥⎥⎥⎦ (62)

by the relation
ã = Λă. (63)

The vector q = 1√
2
[I I]ă is known as the real quadrature,

while p = 1√
2
[−iI iI]ă is called the imaginary or phase

quadrature [64].
Similarly define unitary matricesΛ f ,Λd andΛp of suitable

dimension, of the form (61), and define quadrature vectors

b̃ = Λ f b̆, b̃out = Λ f b̆out, w̃ = Λ f w̆, ṽ = Λdv̆, z̃ = Λpz̆.

Then in quadrature form G is in the form

˙̃a(t) = Ãã(t) + B̃dṽ(t) + B̃ f w̃(t) + B̃ f b̃(t), ã(0) = ã, (64)

b̃out(t) = C̃ f ã(t) + w̃(t) + b̃(t),

z̃(t) = C̃pã(t) + D̃pdṽ(t) + D̃p f w̃(t),

where Ã = ΛAΛ†, B̃d = ΛBdΛ
†
d, B̃ f = ΛB fΛ

†
f , C̃ f =

Λ f C fΛ
†, C̃p = ΛpCpΛ

†, D̃pd = ΛpDpdΛ
†
d, D̃p f = ΛpDp fΛ

†
f .

Note that all entries of the matrices in this representation are
real.

6.4 Series products for linear quantum systems

Assume both G1 and G2 in Figure 4 are linear, in this section
we present the explicit from of G = G2 	G1.

For ease of presentation we assume both G1 and G2 are
passive with parametrization G j = (I,C( j)

− a( j), 0), ( j = 1, 2).
Therefore

ȧ( j)(t) = −1
2

(C( j)
− )†C( j)

− a( j)(t) − (C( j)
− )†b( j)(t), a( j)(0) = a( j),

(65)

b( j)
out(t) = C( j)

− a( j)(t) + b( j)(t), ( j = 1, 2). (66)

According to eq. (29), the composite linear quantum system
G is

G =

⎛⎜⎜⎜⎜⎜⎜⎝I, [C(1)
− C(2)

− ]

⎡⎢⎢⎢⎢⎢⎢⎣
a(1)

a(2)

⎤⎥⎥⎥⎥⎥⎥⎦ ,
1
2i

[(a(1))† (a(2))†]

×
⎡⎢⎢⎢⎢⎢⎢⎣

0 −(C(1)
− )†C(2)

−
(C(2)
− )†C(1)

− 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a(1)

a(2)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ . (67)

By eqs. (55)–(56), G is in the form of
⎡⎢⎢⎢⎢⎢⎢⎣

ȧ(1)(t)

ȧ(2)(t)

⎤⎥⎥⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎢⎢⎣

1
2 (C(1)

− )†C(1)
− 0

(C(2)
− )†C(1)

− (C(2)
− )†C(2)

−

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a(1)(t)

a(2)(t)

⎤⎥⎥⎥⎥⎥⎥⎦
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−
⎡⎢⎢⎢⎢⎢⎢⎣

(C(1)
− )†

−(C(2)
− )†

⎤⎥⎥⎥⎥⎥⎥⎦ b(1)(t), (68)

b(2)
out(t) = [C(1)

− C(2)
− ]

⎡⎢⎢⎢⎢⎢⎢⎣
a(1)(t)

a(2)(t)

⎤⎥⎥⎥⎥⎥⎥⎦ + b(1)(t). (69)

If we identify b(2)(t) with b(1)
out(t) in eqs. (65)–(66), then

eqs. (65)–(66) give rise to system (68)–(69) too. This fact
is useful in forming closed-loop coherent feedback control
systems, c.f., Section 8.1.

7 Performance specifications for linear
quantum systems

In Section 5 we have established criteria for stability, pas-
sivity, and L2 gain for general quantum dissipative systems
studied in Section 3.2. These criteria are expressed in terms
of operators. In this section we specialize those results to lin-
ear quantum systems introduced in Section 6. It can be seen
that for linear quantum systems such criteria can be expressed
in terms of constant matrices.

7.1 Stability, passivity, gain

Perhaps the most basic performance characteristic is stabil-
ity. For system G of open quantum harmonic oscillators pre-
sented in Section 6.1, stability may be evaluated in terms of
the behavior of the number of quanta (e.g. photons) stored in
the system, N = a†a =

∑n
j=1 a∗ja j. We introduce the follow-

ing definition of stability.

Definition 5 (Stability, [33, Sec. III-A]). Let w = 0 and
v = 0 in eq. (50), that is there is no energy input to system G.
We say that G is (i) exponentially stable if there exist scalars
c0 > 0, c1 > 0, and c2 � 0 such that 〈N(t)〉 � c0e−c1t〈N〉 + c2;
(ii) marginally stable if there exist scalars c1 > 0 and c2 � 0
such that 〈N(t)〉 � c1〈N〉 + c2t; and (iii) exponentially un-
stable if there exists an initial system state and real numbers
c0 > 0, c1 > 0 and c2 such that 〈N(t)〉 � c0ec1t〈N〉 + c2.

For example, for the closed optical cavity in Section 3.3(i)
(Figure 1), a(t) = exp(−iωt)a, and a∗(t)a(t) = a∗a for all t,
which means that G is marginally stable but not exponentially
stable—it oscillates—hence the name “oscillator”. However,
an open cavity (1,

√
κa, ωa∗a) (Figure 2) is exponentially sta-

ble, a damped oscillator.
The number operator N = a†a, whose mean value is the

total number of quanta, is a natural Lyapunov function for G,
and is directly related to the energy of the system. However
we find it more convenient to use storage functions of the
form V = 1

2 ă†Pă for non-negative Hermitian matrices P. For
such storage functions, the generator function (14) becomes

GG(V) =
1
2

ă†(A†P + PA)ă. (70)

With this simple yet important observation, the results in Sec-
tion 5 can be specialized to linear quantum systems.

Define the matrix F by

Fdt = (dB̆#(t)dB̆T (t))T =

⎡⎢⎢⎢⎢⎢⎢⎣
0m 0

0 Im

⎤⎥⎥⎥⎥⎥⎥⎦ dt. (71)

The following result is a simple criterion for stability of
linear quantum system G, which is a linear version of Theo-
rems 4 and 6.

Theorem 8 (Stability, [33, Theorem 1]). If there exist con-
stant matrices P � 0 and Q � cP for a scalar c > 0 such that

A†P + PA + Q � 0, (72)

then inequality

〈
ă†(t)Pă(t)

〉
� e−ct

〈
ă†Pă

〉
+
λ

2c
(73)

holds, where λ = tr[B†f PB f F] with F given by eq. (71). If

also P � αI (α > 0), then
〈
a†(t)a(t)

〉
� 1
αe−ct

〈
ă†Pă

〉
+ λ

2cα .
In this case, G is exponentially stable.

In a similar way, by choosing linear versions of supply rate
functions positive real lemma and bounded real lemma can be
established for linear quantum systems.

In order to simplify the notation we write u = [wT vT ]T

for the doubled-up vector of external variables, and define
accordingly

B := [B f Bd]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (74)

where dimensions of identity matrices are implicitly assumed
to be conformal to those of v and w.

Define a supply rate

r(ă, ŭ) =
1
2

(−ă†Qă + ŭ†z̆ + z̆†ŭ). (75)

Then we have the following positive real lemma.

Theorem 9 (Positive Real Lemma, [33, Theorem 3]). The
system G with performance variable z̆ = Cpă is passive if and
only if there exist non-negative definite Hermitian matrices P
and Q such that

⎡⎢⎢⎢⎢⎢⎢⎣
PA + A†P + Q PB −C†p

B†P −Cp 0

⎤⎥⎥⎥⎥⎥⎥⎦ � 0. (76)

Moreover, λ = tr[B†f PB f F].

Remark 3. When

P = H0 =

⎡⎢⎢⎢⎢⎢⎢⎣
Ω− Ω+

Ω#
+ Ω#−

⎤⎥⎥⎥⎥⎥⎥⎦ ,V =
1
2

ă†Pă,

L = C−a +C+a#,M = K−a + K+a#,
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the operator Z in eq. (42) satisfies Z̆ = z̆ = Cpă. That is,
Theorem 9 is a special case of Theorem 5.

In what follows we discuss L2 gain of linear quantum sys-
tems. Denote Dp = [Dp f Dpd], the performance variable can
be rewritten as z̆ = Cpă + Dpŭ. Define a supply rate

r(ă, ŭ) = −1
2

(z̆†z̆ − g2ŭ†ŭ), (77)

where g � 0 is a real gain parameter. The we have the fol-
lowing results.

Theorem 10 (Bounded Real Lemma, [33, Theorem 4]).
The system G with performance variable z̆ = Cpă + Dpŭ is
bounded real with finite L2 gain less than g if and only if there
exists a non-negative Hermitian matrix P such that

⎡⎢⎢⎢⎢⎢⎢⎣
PA + A†P +C†pCp PB +C†pDp

B†P + D†pCp D†pDp − g2I

⎤⎥⎥⎥⎥⎥⎥⎦ � 0. (78)

Moreover, λ = tr[B†f PB f F].

Theorem 11 (Strict Bounded Real Lemma, [33, Theorem 5]).
The following statements are equivalent.

(i) The quantum system G defined in eqs. (50)–(52) is
strictly bounded real with disturbance attenuation g.

(ii) A is stable and
∥∥∥Cp (sI − A)−1 B + Dp

∥∥∥∞ < g.

(iii) g2I − D†pDp > 0 and there exists a Hermitian matrix
P1 > 0 satisfying inequality

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A†P1 + P1A P1B C†p
B†P1 −gI D†p
Cp Dp −gI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (79)

(iv) g2I − D†pDp > 0 and there exists a Hermitian matrix
P2 > 0 satisfying the algebraic Riccati equation

A†P2 + P2A +
(
P2B +C†pDp

)

×
(
g2I − D†pDp

)−1
(B†P†2 + D†pCp)

= 0

with A + BB†P2 being Hurwitz.
Furthermore, if these statements hold, then P1 < P2.

7.2 LQG performance

In this section a quantum LQG cost function is first defined in
the annihilation-creation form, and whose evaluation is con-
nected to a Lyapunov equation in the complex domain. After
that the real domain case is presented. More discussions can
be found in, e.g. [33, 37].

Consider the following stable linear quantum system

dă(t) = Aă(t)dt + B f dB̆(t), (80)

where B(t) is a quantum Wiener process introduced in Sec-
tion 3.1. Given a performance variable z̆(t) = Cpă(t), along
the line of [37], the infinite-horizon LQG cost is

J∞ := lim
t f→∞

1
t f

∫ t f

0

1
2

〈
z̆†(t)z̆(t) + z̆T (t)z̆#(t)

〉
dt

= lim
t f→∞

1
t f

∫ t f

0
Tr

{
CpPLQG(t)C†p

}
dt

= Tr
{
CpPLQGC†p

}
, (81)

where the constant Hermitian matrix PLQG � 0 satisfies the
following Lyapunov equation

APLQG + PLQGA† +
1
2

B f B†f = 0. (82)

In quadrature form, given a stable linear quantum system

dã(t) = Ãã(t)dt + B̃ f dB̃(t) (83)

with performance variable z̃(t) = C̃pã(t). Assume that the
constant real matrix P̃LQG � 0 is the (unique) solution to the
following Lyapunov equation in the real domain

ÃP̃LQG + P̃LQG ÃT + B̃ f B̃T
f = 0. (84)

Then
J∞ = Tr

{
C̃pP̃LQGC̃†p

}
. (85)

8 Coherent feedback control

We have discussed interconnections of quantum systems
(Section 4), open linear quantum systems (Section 6), and
their performance specifications (Section 7). We are now in
a position to study synthesis of open linear quantum systems;
that is, how to connect a plant of interest to another system
(namely controller) so as to achieve pre-specified control per-
formance.

8.1 Closed-loop plant-controller system

In Figure 11, P is the plant to be controlled, and K is the con-
troller to be designed. Clearly, this feedback system involves
both direct and indirect couplings between P and K.

The plant P is described by a system of quantum stochastic
differential equations (QSDEs)

˙̆a(t) = Aă(t) + B12ăK(t) + Bvb̆v(t) + B f w̆(t)

+ B f b̆(t) + Buŭ(t), ă(0) = ă,

y̆(t) = Că(t) + Dvb̆v(t) + D f w̆(t) + D f b̆(t). (86)

bvz

y
u

b+w

Hint

vk1
vk2

P

K

Figure 11 Coherent feedback control arrangement.
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The inputs w̆(t) and b̆(t) are defined in Section 6. y̆(t) is
a selection of output field channels from the plant. b̆v(t) is a
vector of additional quantum white noises; ŭ(t) is a quantum
field signal from the to-be-designed controller K, hence it is
a vector of physical variables. The term B12ăK(t) is due to
direct coupling between P and K.

The fully quantum controller K is a linear quantum system
of the form3)

˙̆aK(t) = AKăK(t) + B21ă(t) + BKy̆(t) + BK1b̆vK1(t)

+ BK2b̆vK2(t), ăK(0) = ăK ,

ŭ(t) = CKăK(t) + b̆vK1(t). (87)

This structure allows for direct coupling and indirect coupling
between the plant P and the controller K. Here, b̆vK1(t) and
b̆vK2(t) are independent quantum white noises, and ŭ(t) is the
field output of the controller corresponding to b̆vK1(t). Finally
the terms B12ăK(t) and B21ă(t) are due to the direct coupling
between the plant and controller in terms of an interaction
Hamiltonian

Hint =
1
2

(
ă†Ξ†ăK + ă†KΞă

)
, (88)

where Ξ = Δ(iK−, iK+) for complex matrices K− and K+ of
suitable dimensions, c.f. Section 4.3.

The controller matrices K−,K+, (or B12, B21) for direct
coupling, and AK , BK ,CK , BK1, BK2 for indirect coupling are
to be found to optimize performance criteria defined in terms
of the closed-loop performance variable

z̆(t) = [Cp DuCK]

⎡⎢⎢⎢⎢⎢⎢⎣
ă(t)

ăK(t)

⎤⎥⎥⎥⎥⎥⎥⎦ + D̆p f w̆(t). (89)

Because standard matrix algorithms will be used in H∞
synthesis and LQG synthesis in later sections, we resort to
quadrature representation discussed in Section 6.3. Let ã, ãK ,
w̃, b̃, b̃v, ũ, z̃, ỹ, b̃vK1 , b̃vK2 be the quadrature counterparts of ă,
ăK , w̆, b̆, b̆v, z̆, β̆u, y̆, b̆vK1 , b̆vK2 respectively. Define

Ãcl =

⎡⎢⎢⎢⎢⎢⎢⎣
Ã B̃uC̃K

B̃KC̃ ÃK

⎤⎥⎥⎥⎥⎥⎥⎦ + Ξ̃, B̃cl =

⎡⎢⎢⎢⎢⎢⎢⎣
B̃ f

B̃KD̃ f

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G̃cl =

⎡⎢⎢⎢⎢⎢⎢⎣
B̃ f B̃v B̃u 0

B̃KD̃ f B̃KD̃v B̃K1 B̃K2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C̃cl =

[
C̃p D̃uC̃K

]
, D̃cl = D̃p f ,

where Ξ̃ = [0 B̃12; B̃21 0] satisfies B̃21 = ΘB̃T
12Θ. Then the

closed-loop system in the quadrature representation is given

by

⎡⎢⎢⎢⎢⎢⎢⎣
˙̃a(t)

˙̃aK(t)

⎤⎥⎥⎥⎥⎥⎥⎦ = Ãcl

⎡⎢⎢⎢⎢⎢⎢⎣
ã(t)

ãK(t)

⎤⎥⎥⎥⎥⎥⎥⎦ + B̃clw̃(t) + G̃cl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃(t)

b̃v(t)

b̃vK1(t)

b̃vK2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (90)

z̃(t) = C̃cl

⎡⎢⎢⎢⎢⎢⎢⎣
ã(t)

ãK(t)

⎤⎥⎥⎥⎥⎥⎥⎦ + D̃clw̃(t). (91)

8.2 H∞ control

As in the classical case, the bounded real lemmas stated in
Section 6.4 can be used for H∞ controller synthesis of open
linear quantum systems. It is shown in [34] that for open
linear quantum systems H∞ control performance and physi-
cal realizability condition of controllers can be treated sepa-
rately. Adding direct coupling between plants and controllers
complicates H∞ controller synthesis. Nonetheless, the sepa-
ration of H∞ control performance and physical realizability
condition still holds. This is a unique feature of quantum
H∞ controller synthesis: To guarantee physical realizability,
vacuum noise is added, while such noise does not affect H∞

control performance [34].
(i) LMI formulation. In this section we present a gen-

eral formulation using LMIs for H∞ synthesis of open linear
quantum stochastic systems.

According to the strict bounded real lemma (Theorem
6.4), the closed-loop system (90)–(91) is internally stable and
strictly bounded real (from w̃ to z̃) with disturbance attenua-
tion g if and only if there is a real symmetric matrix P such
that

P > 0, (92)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÃT
clP + PÃcl PB̃cl C̃T

cl

B̃T
clP −gI D̃T

cl

C̃cl D̃cl −gI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (93)

The H∞ controller synthesis is to find indirect coupling pa-
rameters ÃK , B̃K , C̃K and direct coupling parameters Ξ̃ such
that eqs. (92)–(93) hold.

Partition P and its inverse P−1 to be

P =
⎡⎢⎢⎢⎢⎢⎢⎣

Y N

NT ∗

⎤⎥⎥⎥⎥⎥⎥⎦ , P−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
X M

MT ∗

⎤⎥⎥⎥⎥⎥⎥⎦ .

Define matrices

Π1 =

⎡⎢⎢⎢⎢⎢⎢⎣
X I

MT 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Π2 =

⎡⎢⎢⎢⎢⎢⎢⎣
I Y

0 NT

⎤⎥⎥⎥⎥⎥⎥⎦ .

3) We assume that all the variables and matrices of the plant and the controller have compatible dimension, but we do not bother to specify them explicitly.
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And also define a change of variables

Â=N(ÃK MT + B̃KC̃X) + Y(B̃uC̃K MT + ÃX),

B̂=NB̃K ,

Ĉ=C̃K MT ,

Ω = ΠT
1PΞ̃Π1. (94)

With these notations, eqs. (92) and (93) hold if and only if
the following inequalities hold:

−
⎡⎢⎢⎢⎢⎢⎢⎣

X I

I Y

⎤⎥⎥⎥⎥⎥⎥⎦ < 0, (95)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ÃX + XÃT + B̃uĈ+(B̃uĈ)T

Â+ÃT

B̃T
f

C̃p X+D̃uĈ

Ã + Â
T ∗ ∗

ÃT Y + YÃ + B̂C̃ + (B̂C̃)T ∗ ∗
(YB̃ f + B̂D̃ f )T −gI ∗

C̃p D̃cl −gI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̃12MT + (B̃12MT )T (NB̃21X)T + (YB̃12MT )T

NB̃21X + YB̃12MT NB̃21 + (NB̃21)T

0 0

0 0

0 0

0 0

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (96)

If eqs. (95) and (96) are simultaneously soluble, according to
eq. (94), the following matrices can be obtained:

B̃K = N−1 B̂, (97)

C̃K = Ĉ
(
MT

)−1
,

ÃK = N−1( Â−NB̃KC̃X − Y(B̃uC̃K MT + ÃX))M−T ,

Ξ̃ = P−1
(
Π−T

1

)
ΩΠ−1

1 . (98)

Unfortunately, notice that there are such terms as NB̃21X and
YB̃12MT in inequality (96), which induce nonlinearity. The
above analysis shows it is hard to directly utilize LMI tech-
niques to do controller design when direct coupling is in-
volved.

(ii) Multi-step optimization. In this section, we attempt
to circumvent the above difficulty by proposing a multi-step
optimization procedure which is formulated as follows:

Initialization. Set B̃12 = 0 and B̃21 = 0.
Step 1. Solve linear matrix inequalities (95) and (96) for

parameters Â, B̂, Ĉ, X, Y and disturbance gain g, then choose
matrices M and N satisfying MN−1 = I − XY.

Step 2. Pertaining to Step 1. Solve inequality (96) for
direct coupling parameters B̃12, B̃21 and disturbance gain g.

Step 3. Fix B̃12 and B̃21 obtained in Step 2 and M and N
in Step 1, go to Step 1.

After the above iterative procedure is complete, use the
values B̃12, B̃21, ÃK , B̃K , C̃K obtained to find B̃K1, B̃K2 to en-
sure physical realizability of the controller. A complete pro-
cedure of finding matrices B̃K1, B̃K2 is given in [34, Sec. V-
D].

Remark 4. Steps 1 and 2 are standard LMI problems
which can be solved efficiently using the Matlab LMI tool-
box. However, there is some delicate issue in Step 3. As-
sume that B̃12 and B̃21 have been obtained in Step 2. Accord-
ing to the second item in (96), constant matrices M and N
must be specified in order to render (96) linear in parameters
Â, B̂, Ĉ, X, Y, and disturbance gain g. In Step 3, M and N
obtained in Step 1 is used. Unfortunately, this choice of M
and N sometimes may generate a controller whose parame-
ters are ill-conditioned. Due to this reason, M and N in Step
3 might have to be chosen carefully to produce a physically
meaningful controller. This fact is illuminated by an example
in [33, Sec. IV-C6].

Finally we discuss robustness briefly. It is demonstrated in
[33] that direct coupling may improve robustness of closed-
loop quantum feedback systems. For instance, for the exam-
ple studied in [34, Sec. VII.A], using coupling coefficients
κ1 = 2.6, κ2 = κ3 = 0.2, we implement Step 1 of the above
multi-step optimization procedure to design an indirect cou-
pling, and obtain closed-loop L2 gain 0.0487. We implement
Step 2 to design direct coupling and obtain an L2 gain of
0.0498. This is a bit worse than the previous one, however
the difference is quite small. Now we assume there is uncer-
tainty in the coupling coefficient κ1, say the actual value of κ1
is 1.3. In this case, the L2 gain of the closed-loop with indi-
rect coupling becomes 0.1702, which is a significant perfor-
mance degradation. However, the L2 gain of the closed-loop
with both direct and indirect couplings is 0.0595, which is
still close to the original 0.0498.

8.3 LQG control

In this section we study the problem of coherent quantum
LQG control by means of both direct and indirect couplings.
In contrast to the coherent quantum H∞ controller synthe-
sis presented in Section 6.4, the nice property of separation
of control and physical realizability does not hold any more.
This is evident as LQG control concerns the influence of
quantum white noise on the plant, the addition of quantum
noise that guarantees the physical realizability of the to-be-
designed controller affects the overall LQG control perfor-
mance.
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In the following we just give a brief formulation of the co-
herent quantum LQG control problem. In-depth discussions
can be found in [33, 37, 65].

We make the following assumption.
Assumption A2. There are no quantum signal w̆(t) and

noise input b̆v(t) in the quantum plant P in (86).
Following the development in Section 7.2, the LQG con-

trol objective is to design a controller (87) such that the per-
formance index J∞ = Tr

{
C̃clP̃LQGC̃†cl

}
is minimized, subject

to equation (84) and the quadrature counterpart of the physi-
cal realizability condition (57)–(59).

As yet, quantum LQG coherent feedback is still an out-
standing problem, there are no analytic solutions. In [37] an
indirect coupling is designed to address the coherent quantum
LQG control problem, where a numerical procedure based
on semidefinite programming is proposed to design the in-
direct coupling. In order to design both direct and indirect
couplings. In [33, Sec. IV-D] a multi-step optimization algo-
rithm is developed to incorporate direct coupling into numer-
ical design procedures.

9 Network synthesis

A linear quantum controller, obtained from either coherent
H∞ or LQG control synthesis, is in the form of a set of linear
quantum stochastic differential equations. Network synthesis
theory is concerned with how to physically implement such
controllers by means of physical devices like optical instru-
ments. This problem has been addressed in [40–43, 66]. The
general result is: A general linear quantum dynamical system
can be (approximately) physically implemented by linear and
nonlinear quantum optical elements such as optical cavities,
parametric oscillators, beam splitters, and phase shifters.

Lately, the Mabuchi group at Stanford [28] has developed a
Quantum Hardware Description Language (QHDL) to facili-
tate the analysis and synthesis of quantum feedback networks
described in this survey. As a subset of the standard Very
High Speed Integrated Circuit (VHSIC) Hardware Descrip-
tion Language (VHDL), QHDL provides high-level modular
representations of quantum feedback networks. This user-
friendly interface will be helpful to the fabrication of complex
photonic circuits.

10 Conclusions

In this survey we have presented a brief look at recent re-
sults concerning quantum feedback networks and control. On
the basis of this model interconnection structures of quantum
systems have been presented. Fundamental characteristics of
quantum systems such as stability, passivity, and L2 gain have
been described. It turns out that for linear quantum systems
these fundamental characteristics have very explicit forms.
The problem of coherent H∞ control and coherent LQG con-
trol have been discussed.
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