235 research outputs found

    Dissections, orientations, and trees, with applications to optimal mesh encoding and to random sampling

    Full text link
    We present a bijection between some quadrangular dissections of an hexagon and unrooted binary trees, with interesting consequences for enumeration, mesh compression and graph sampling. Our bijection yields an efficient uniform random sampler for 3-connected planar graphs, which turns out to be determinant for the quadratic complexity of the current best known uniform random sampler for labelled planar graphs [{\bf Fusy, Analysis of Algorithms 2005}]. It also provides an encoding for the set P(n)\mathcal{P}(n) of nn-edge 3-connected planar graphs that matches the entropy bound 1nlog2P(n)=2+o(1)\frac1n\log_2|\mathcal{P}(n)|=2+o(1) bits per edge (bpe). This solves a theoretical problem recently raised in mesh compression, as these graphs abstract the combinatorial part of meshes with spherical topology. We also achieve the {optimal parametric rate} 1nlog2P(n,i,j)\frac1n\log_2|\mathcal{P}(n,i,j)| bpe for graphs of P(n)\mathcal{P}(n) with ii vertices and jj faces, matching in particular the optimal rate for triangulations. Our encoding relies on a linear time algorithm to compute an orientation associated to the minimal Schnyder wood of a 3-connected planar map. This algorithm is of independent interest, and it is for instance a key ingredient in a recent straight line drawing algorithm for 3-connected planar graphs [\bf Bonichon et al., Graph Drawing 2005]

    Uniform random sampling of planar graphs in linear time

    Get PDF
    This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Gim\'enez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost. Then, the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with nn vertices, which was a little over O(n7)O(n^7).Comment: 55 page

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Schnyder woods for higher genus triangulated surfaces

    No full text
    The final version of this extended abstract has been published in "Discrete and Computational Geometry (2009)"International audienceSchnyder woods are a well known combinatorial structure for planar graphs, which yields a decomposition into 3 vertex-spanning trees. Our goal is to extend definitions and algorithms for Schnyder woods designed for planar graphs (corresponding to combinatorial surfaces with the topology of the sphere, i.e., of genus 0) to the more general case of graphs embedded on surfaces of arbitrary genus. First, we define a new traversal order of the vertices of a triangulated surface of genus g together with an orientation and coloration of the edges that extends the one proposed by Schnyder for the planar case. As a by-product we show how some recent schemes for compression and compact encoding of graphs can be extended to higher genus. All the algorithms presented here have linear time complexity

    Transversal structures on triangulations: a combinatorial study and straight-line drawings

    Get PDF
    This article focuses on a combinatorial structure specific to triangulated plane graphs with quadrangular outer face and no separating triangle, which are called irreducible triangulations. The structure has been introduced by Xin He under the name of regular edge-labelling and consists of two bipolar orientations that are transversal. For this reason, the terminology used here is that of transversal structures. The main results obtained in the article are a bijection between irreducible triangulations and ternary trees, and a straight-line drawing algorithm for irreducible triangulations. For a random irreducible triangulation with nn vertices, the grid size of the drawing is asymptotically with high probability 11n/27×11n/2711n/27\times 11n/27 up to an additive error of \cO(\sqrt{n}). In contrast, the best previously known algorithm for these triangulations only guarantees a grid size (n/21)×n/2(\lceil n/2\rceil -1)\times \lfloor n/2\rfloor.Comment: 42 pages, the second version is shorter, focusing on the bijection (with application to counting) and on the graph drawing algorithm. The title has been slightly change

    Optimal succinct representations of planar maps

    Get PDF
    This paper addresses the problem of representing the connectivity information of geometric objects using as little memory as possible. As opposed to raw compression issues, the focus is here on designing data structures that preserve the possibility of answering incidence queries in constant time. We propose in particular the first optimal representations for 3-connected planar graphs and triangulations, which are the most standard classes of graphs underlying meshes with spherical topology. Optimal means that these representations asymptotically match the respective entropy of the two classes, namely 2 bits per edge for 3-connected planar graphs, and 1.62 bits per triangle or equivalently 3.24 bits per vertex for triangulations

    A unified bijective method for maps: application to two classes with boundaries

    No full text
    International audienceBased on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte's recursive method.En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre construction se spécialise de manière simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les familles de cartes. Comme application non-triviale de notre méthode nous donnons les premières preuves bijectives pour l'énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte
    corecore