8,740 research outputs found

    DIP: Disruption-Tolerance for IP

    Full text link
    Disruption Tolerant Networks (DTN) have been a popular subject of recent research and development. These networks are characterized by frequent, lengthy outages and a lack of contemporaneous end-to-end paths. In this work we discuss techniques for extending IP to operate more effectively in DTN scenarios. Our scheme, Disruption Tolerant IP (DIP) uses existing IP packet headers, uses the existing socket API for applications, is compatible with IPsec, and uses familiar Policy-Based Routing techniques for network management

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page

    Routing in a many-to-one communication scenario in a realistic VDTN

    Get PDF
    In this paper, we evaluate and compare the performance of different routing protocols in a many-to-one communication within a Vehicular Delay Tolerant Network (VDTN). Seven groups with three stationary sensor nodes sense the temperature, humidity and wind speed and send these data to a stationary destination node that collect them for statistical and data analysis purposes. Vehicles moving in Tirana city roads in Albania during the opportunistic contacts will exchange the sensed data to destination node. The simulations are conducted with the Opportunistic Network Environment (ONE) simulator. For the simulations we considered two different scenarios where the distance of the source nodes from the destination is short and long. For both scenarios the effect of node density, ttl and node movement model is evaluated. The performance is analyzed using delivery probability, overhead ratio, average latency, average number of hops and average buffer time metrics. The simulation results show that the increase of node density increases the delivery probability for all protocols and both scenarios, and better results are achieved when shortest-path map-based movement model is used. The increase of ttl slightly affects the performance of all protocols. By increasing the distance between source nodes and destination node, delivery probability is decreased almost 10% for all protocols, the overhead for sprayandwait protocol does not change, but for other protocols is slightly increased and the average number of hops and average latency is increased.Peer ReviewedPostprint (author's final draft

    On the feasibility of monitoring DTN: Impacts of fine tuning on routing protocols and the user experience

    Get PDF
    The “machine to machine” communication paradigm will become a central element for mobile networks. This paradigm can be easily constructed by a contact-based network, notably a disruption/delay tolerant networks (DTN). To characterize a DTN, we can use the Inter-contact time among the nodes. The better understanding of inter-contact time (ICT) has practical applications on the tuning of forwarding strategies, and hence in the quality of the User Experience. Nevertheless, the fine tuning of those parameters is tight to a set of assumptions about the regularity of movement or periodicity of patterns in an usually non complete and cumbersome statistical analysis. That is why in a dynamic environment where we cannot assume any previous information the tuning of parameters is usually overestimated. In this work we study how monitoring can help to adapt those parameters to give a better understanding of both natural evolution of the network and non periodical events

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival
    corecore