1,918 research outputs found

    Dispositions and the Infectious Disease Ontology

    Get PDF
    This paper addresses the use of dispositions in the Infectious Disease Ontology (IDO). IDO is an ontology constructed according to the principles of the Open Biomedical Ontology (OBO) Foundry and uses the Basic Formal Ontology (BFO) as an upper ontology. After providing a brief introduction to disposition types in BFO and IDO, we discuss three general techniques for representing combinations of dispositions under the headings blocking dispositions, complementary dispositions, and collective dispositions. Motivating examples for each combination of dispositions is given along with a specific use case in IDO. Description logic restrictions are used to formalize statements relating to these combinations

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    Ontological representation of CDC Active Bacterial Core Surveillance Case Reports

    Get PDF
    The Center for Disease Control and Prevention’s Active Bacterial Core Surveillance (CDC ABCs) Program is a collaborative effort betweeen the CDC, state health departments, laboratories, and universities to track invasive bacterial pathogens of particular importance to public health [1]. The year-end surveillance reports produced by this program help to shape public policy and coordinate responses to emerging infectious diseases over time. The ABCs case report form (CRF) data represents an excellent opportunity for data reuse beyond the original surveillance purposes

    Representing dispositions

    Get PDF
    Dispositions and tendencies feature significantly in the biomedical domain and therefore in representations of knowledge of that domain. They are not only important for specific applications like an infectious disease ontology, but also as part of a general strategy for modelling knowledge about molecular interactions. But the task of representing dispositions in some formal ontological systems is fraught with several problems, which are partly due to the fact that Description Logics can only deal well with binary relations. The paper will discuss some of the results of the philosophical debate about dispositions, in order to see whether the formal relations needed to represent dispositions can be broken down to binary relations. Finally, we will discuss problems arising from the possibility of the absence of realizations, of multi-track or multi-trigger dispositions and offer suggestions on how to deal with them

    Towards an Ontological Representation of Resistance: The Case of MRSa

    Get PDF
    This paper addresses a family of issues surrounding the biological phenomenon of resistance and its representation in realist ontologies. Resistance terms from various existing ontologies are examined and found to be either overly narrow, inconsistent, or
otherwise problematic. We propose a more coherent ontological representation using the antibiotic resistance in Methicillin-Resistant _Staphylococcus aureus_ (MRSa) as a case study

    Constructing a lattice of Infectious Disease Ontologies from a Staphylococcus aureus isolate repository

    Get PDF
    A repository of clinically associated Staphylococcus aureus (Sa) isolates is used to semi‐automatically generate a set of application ontologies for specific subfamilies of Sa‐related disease. Each such application ontology is compatible with the Infectious Disease Ontology (IDO) and uses resources from the Open Biomedical Ontology (OBO) Foundry. The set of application ontologies forms a lattice structure beneath the IDO‐Core and IDO‐extension reference ontologies. We show how this lattice can be used to define a strategy for the construction of a new taxonomy of infectious disease incorporating genetic, molecular, and clinical data. We also outline how faceted browsing and query of annotated data is supported using a lattice application ontology

    An improved ontological representation of dendritic cells as a paradigm for all cell types

    Get PDF
    The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’

    Definitions in ontologies

    Get PDF
    Definitions vary according to context of use and target audience. They must be made relevant for each context to fulfill their cognitive and linguistic goals. This involves adapting their logical structure, type of content, and form to each context of use. We examine from these perspectives the case of definitions in ontologies

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf LĂŒthe, Luc Schneider, Peter Simons, Wojciech Ć»eƂaniec, and Jan WoleƄski

    Coordinating Coronavirus Research: The COVID-19 Infectious Disease Ontology

    Get PDF
    Rapidly, accurately and easily interpreting generated data is of fundamental concern. Ontologies – structured controlled vocabularies – support interoperability and prevent the development of data silos which undermine interoperability. The Open Biological and Biomedical Ontologies (OBO) Foundry serves to ensure ontologies remain interoperable through adherence by its members to core ontology design principles. For example, the Infectious Disease Ontology (IDO) Core includes terminological content common to investigations of all infectious diseases. Ontologies covering more specific infectious diseases in turn extend from IDOCore, such as the Coronavirus Infectious Disease Ontology (CIDO). The growing list of virus-specific IDO extensions has motivated construction of a reference ontology covering content common to viral infectious disease investigations: the Virus Infectious Disease Ontology (VIDO). Additionally the present pandemic has motivated construction of a more specific extension of CIDO covering terminological contents specific to the pandemic: the COVID-19 Infectious Disease Ontology (IDO-COVID-19). We report here the development of VIDO and IDO-COVID-19. More specifically we examine newly minted terms for each ontology, showcase reuse of terms from existing OBO ontologies, motivate choicepoints for ontological decisions based on research from relevant life sciences, apply ontology terms to explicate viral pathogenesis, and discuss the annotating power of virus ontologies for use in machine-learning projects
    • 

    corecore