859 research outputs found

    Multi-keyword multi-click advertisement option contracts for sponsored search

    Full text link
    In sponsored search, advertisement (abbreviated ad) slots are usually sold by a search engine to an advertiser through an auction mechanism in which advertisers bid on keywords. In theory, auction mechanisms have many desirable economic properties. However, keyword auctions have a number of limitations including: the uncertainty in payment prices for advertisers; the volatility in the search engine's revenue; and the weak loyalty between advertiser and search engine. In this paper we propose a special ad option that alleviates these problems. In our proposal, an advertiser can purchase an option from a search engine in advance by paying an upfront fee, known as the option price. He then has the right, but no obligation, to purchase among the pre-specified set of keywords at the fixed cost-per-clicks (CPCs) for a specified number of clicks in a specified period of time. The proposed option is closely related to a special exotic option in finance that contains multiple underlying assets (multi-keyword) and is also multi-exercisable (multi-click). This novel structure has many benefits: advertisers can have reduced uncertainty in advertising; the search engine can improve the advertisers' loyalty as well as obtain a stable and increased expected revenue over time. Since the proposed ad option can be implemented in conjunction with the existing keyword auctions, the option price and corresponding fixed CPCs must be set such that there is no arbitrage between the two markets. Option pricing methods are discussed and our experimental results validate the development. Compared to keyword auctions, a search engine can have an increased expected revenue by selling an ad option.Comment: Chen, Bowei and Wang, Jun and Cox, Ingemar J. and Kankanhalli, Mohan S. (2015) Multi-keyword multi-click advertisement option contracts for sponsored search. ACM Transactions on Intelligent Systems and Technology, 7 (1). pp. 1-29. ISSN: 2157-690

    Pricing average price advertising options when underlying spot market prices are discontinuous

    Get PDF
    Advertising options have been recently studied as a special type of guaranteed contracts in online advertising, which are an alternative sales mechanism to real-time auctions. An advertising option is a contract which gives its buyer a right but not obligation to enter into transactions to purchase page views or link clicks at one or multiple pre-specified prices in a specific future period. Different from typical guaranteed contracts, the option buyer pays a lower upfront fee but can have greater flexibility and more control of advertising. Many studies on advertising options so far have been restricted to the situations where the option payoff is determined by the underlying spot market price at a specific time point and the price evolution over time is assumed to be continuous. The former leads to a biased calculation of option payoff and the latter is invalid empirically for many online advertising slots. This paper addresses these two limitations by proposing a new advertising option pricing framework. First, the option payoff is calculated based on an average price over a specific future period. Therefore, the option becomes path-dependent. The average price is measured by the power mean, which contains several existing option payoff functions as its special cases. Second, jump-diffusion stochastic models are used to describe the movement of the underlying spot market price, which incorporate several important statistical properties including jumps and spikes, non-normality, and absence of autocorrelations. A general option pricing algorithm is obtained based on Monte Carlo simulation. In addition, an explicit pricing formula is derived for the case when the option payoff is based on the geometric mean. This pricing formula is also a generalized version of several other option pricing models discussed in related studies.Comment: IEEE Transactions on Knowledge and Data Engineering, 201

    Statistical Arbitrage Mining for Display Advertising

    Full text link
    We study and formulate arbitrage in display advertising. Real-Time Bidding (RTB) mimics stock spot exchanges and utilises computers to algorithmically buy display ads per impression via a real-time auction. Despite the new automation, the ad markets are still informationally inefficient due to the heavily fragmented marketplaces. Two display impressions with similar or identical effectiveness (e.g., measured by conversion or click-through rates for a targeted audience) may sell for quite different prices at different market segments or pricing schemes. In this paper, we propose a novel data mining paradigm called Statistical Arbitrage Mining (SAM) focusing on mining and exploiting price discrepancies between two pricing schemes. In essence, our SAMer is a meta-bidder that hedges advertisers' risk between CPA (cost per action)-based campaigns and CPM (cost per mille impressions)-based ad inventories; it statistically assesses the potential profit and cost for an incoming CPM bid request against a portfolio of CPA campaigns based on the estimated conversion rate, bid landscape and other statistics learned from historical data. In SAM, (i) functional optimisation is utilised to seek for optimal bidding to maximise the expected arbitrage net profit, and (ii) a portfolio-based risk management solution is leveraged to reallocate bid volume and budget across the set of campaigns to make a risk and return trade-off. We propose to jointly optimise both components in an EM fashion with high efficiency to help the meta-bidder successfully catch the transient statistical arbitrage opportunities in RTB. Both the offline experiments on a real-world large-scale dataset and online A/B tests on a commercial platform demonstrate the effectiveness of our proposed solution in exploiting arbitrage in various model settings and market environments.Comment: In the proceedings of the 21st ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2015

    A lattice framework for pricing display advertisement options with the stochastic volatility underlying model

    Full text link
    Advertisement (abbreviated ad) options are a recent development in online advertising. Simply, an ad option is a first look contract in which a publisher or search engine grants an advertiser a right but not obligation to enter into transactions to purchase impressions or clicks from a specific ad slot at a pre-specified price on a specific delivery date. Such a structure provides advertisers with more flexibility of their guaranteed deliveries. The valuation of ad options is an important topic and previous studies on ad options pricing have been mostly restricted to the situations where the underlying prices follow a geometric Brownian motion (GBM). This assumption is reasonable for sponsored search; however, some studies have also indicated that it is not valid for display advertising. In this paper, we address this issue by employing a stochastic volatility (SV) model and discuss a lattice framework to approximate the proposed SV model in option pricing. Our developments are validated by experiments with real advertising data: (i) we find that the SV model has a better fitness over the GBM model; (ii) we validate the proposed lattice model via two sequential Monte Carlo simulation methods; (iii) we demonstrate that advertisers are able to flexibly manage their guaranteed deliveries by using the proposed options, and publishers can have an increased revenue when some of their inventories are sold via ad options.Comment: Bowei Chen and Jun Wang. A lattice framework for pricing display advertisement options with the stochastic volatility underlying model. Electronic Commerce Research and Applications, 2015, Volume 14, Issue 6, pages 465-479, ISSN: 1567-422

    Real-time Bidding for Online Advertising: Measurement and Analysis

    Get PDF
    The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatically buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.Comment: Accepted by ADKDD '13 worksho

    Real-Time Bidding by Reinforcement Learning in Display Advertising

    Get PDF
    The majority of online display ads are served through real-time bidding (RTB) --- each ad display impression is auctioned off in real-time when it is just being generated from a user visit. To place an ad automatically and optimally, it is critical for advertisers to devise a learning algorithm to cleverly bid an ad impression in real-time. Most previous works consider the bid decision as a static optimization problem of either treating the value of each impression independently or setting a bid price to each segment of ad volume. However, the bidding for a given ad campaign would repeatedly happen during its life span before the budget runs out. As such, each bid is strategically correlated by the constrained budget and the overall effectiveness of the campaign (e.g., the rewards from generated clicks), which is only observed after the campaign has completed. Thus, it is of great interest to devise an optimal bidding strategy sequentially so that the campaign budget can be dynamically allocated across all the available impressions on the basis of both the immediate and future rewards. In this paper, we formulate the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set. By modeling the state transition via auction competition, we build a Markov Decision Process framework for learning the optimal bidding policy to optimize the advertising performance in the dynamic real-time bidding environment. Furthermore, the scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.Comment: WSDM 201

    Multi-Keyword Multi-Click Option Contracts for Sponsored Search Advertising

    Get PDF
    In sponsored search, advertising slots are usually sold by a search engine to an advertiser through an auction mechanism in which advertisers bid on keywords. In theory, an auction mechanism encourages the advertisers to truthfully bid for keywords. However, keyword auctions have a number of problems including: (i) volatility in revenue, (ii) uncertainty in the bidding and charged prices for advertisers’ keywords, and (iii) weak brand loyalty between the advertiser and the search engine. To address these issues, we study the possibility of creating a special option contract that alleviates these problems. In our proposal, an advertiser purchases an option in advance from a search engine by paying an upfront fee, known as the option price. The advertiser then has the right, but no obligation, to then purchase specific keywords for a fixed costper-click (CPC) for a specified number of clicks in a specified period of time. Hence, the advertiser has increased certainty in sponsored search while the search engine could raise the customers’ loyalty. The proposed option contract can be used in conjunction with traditional keyword auctions. As such, the option price and corresponding fixed CPC price must be set such that there is no arbitrage opportunity. In this paper, we discuss an option pricing model tailored to sponsored search that deals with spot CPCs of targeted keywords in a generalized second price (GSP) auction. We show that the pricing model for keywords is closely related to a special exotic option in finance that contains multiple underlying assets (multi-keywords) and is also multi-exercisable (multi-clicks). Experimental results on real advertising data verify our pricing model and demonstrate that advertising options can benefit both advertisers and search engines

    Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting

    Get PDF
    The most significant progress in recent years in online display advertising is what is known as the Real-Time Bidding (RTB) mechanism to buy and sell ads. RTB essentially facilitates buying an individual ad impression in real time while it is still being generated from a user’s visit. RTB not only scales up the buying process by aggregating a large amount of available inventories across publishers but, most importantly, enables direct targeting of individual users. As such, RTB has fundamentally changed the landscape of digital marketing. Scientifically, the demand for automation, integration and optimisation in RTB also brings new research opportunities in information retrieval, data mining, machine learning and other related fields. In this monograph, an overview is given of the fundamental infrastructure, algorithms, and technical solutions of this new frontier of computational advertising. The covered topics include user response prediction, bid landscape forecasting, bidding algorithms, revenue optimisation, statistical arbitrage, dynamic pricing, and ad fraud detection
    • …
    corecore