609 research outputs found

    Disjunctive Normal Level Set: An Efficient Parametric Implicit Method

    Get PDF
    Level set methods are widely used for image segmentation because of their capability to handle topological changes. In this paper, we propose a novel parametric level set method called Disjunctive Normal Level Set (DNLS), and apply it to both two phase (single object) and multiphase (multi-object) image segmentations. The DNLS is formed by union of polytopes which themselves are formed by intersections of half-spaces. The proposed level set framework has the following major advantages compared to other level set methods available in the literature. First, segmentation using DNLS converges much faster. Second, the DNLS level set function remains regular throughout its evolution. Third, the proposed multiphase version of the DNLS is less sensitive to initialization, and its computational cost and memory requirement remains almost constant as the number of objects to be simultaneously segmented grows. The experimental results show the potential of the proposed method.Comment: 5 page

    Disjunctive normal shape models

    Get PDF
    A novel implicit parametric shape model is proposed for segmentation and analysis of medical images. Functions representing the shape of an object can be approximated as a union of N polytopes. Each polytope is obtained by the intersection of M half-spaces. The shape function can be approximated as a disjunction of conjunctions, using the disjunctive normal form. The shape model is initialized using seed points defined by the user. We define a cost function based on the Chan-Vese energy functional. The model is differentiable, hence, gradient based optimization algorithms are used to find the model parameters

    Disjunctive normal shape and appearance priors with applications to image segmentation

    Get PDF
    The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method

    Dendritic Spine Shape Analysis: A Clustering Perspective

    Get PDF
    Functional properties of neurons are strongly coupled with their morphology. Changes in neuronal activity alter morphological characteristics of dendritic spines. First step towards understanding the structure-function relationship is to group spines into main spine classes reported in the literature. Shape analysis of dendritic spines can help neuroscientists understand the underlying relationships. Due to unavailability of reliable automated tools, this analysis is currently performed manually which is a time-intensive and subjective task. Several studies on spine shape classification have been reported in the literature, however, there is an on-going debate on whether distinct spine shape classes exist or whether spines should be modeled through a continuum of shape variations. Another challenge is the subjectivity and bias that is introduced due to the supervised nature of classification approaches. In this paper, we aim to address these issues by presenting a clustering perspective. In this context, clustering may serve both confirmation of known patterns and discovery of new ones. We perform cluster analysis on two-photon microscopic images of spines using morphological, shape, and appearance based features and gain insights into the spine shape analysis problem. We use histogram of oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological features, and intensity profile based features for cluster analysis. We use x-means to perform cluster analysis that selects the number of clusters automatically using the Bayesian information criterion (BIC). For all features, this analysis produces 4 clusters and we observe the formation of at least one cluster consisting of spines which are difficult to be assigned to a known class. This observation supports the argument of intermediate shape types.Comment: Accepted for BioImageComputing workshop at ECCV 201

    Disjunctive normal level set: an efficient parametric implicit method

    Get PDF
    Level set methods are widely used for image segmentation because of their capability to handle topological changes. In this paper, we propose a novel parametric level set method called Disjunctive Normal Level Set (DNLS), and apply it to both two phase (single object) and multiphase (multi-object) image segmentations. The DNLS is formed by union of polytopes which themselves are formed by intersections of half-spaces. The proposed level set framework has the following major advantages compared to other level set methods available in the literature. First, segmentation using DNLS converges much faster. Second, the DNLS level set function remains regular throughout its evolution. Third, the proposed multiphase version of the DNLS is less sensitive to initialization, and its computational cost and memory requirement remains almost constant as the number of objects to be simultaneously segmented grows. The experimental results show the potential of the proposed method

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation

    Bayesian methods for segmentation of objects from multimodal and complex shape densities using statistical shape priors

    Get PDF
    In many image segmentation problems involving limited and low-quality data, employing statistical prior information about the shapes of the objects to be segmented can significantly improve the segmentation result. However, defining probability densities in the space of shapes is an open and challenging problem, especially if the object to be segmented comes from a shape density involving multiple modes (classes). In the literature, there are some techniques that exploit nonparametric shape priors to learn multimodal prior densities from a training set. These methods solve the problem of segmenting objects of limited and low-quality to some extent by performing maximum a posteriori (MAP) estimation. However, these methods assume that the boundaries found by using the observed data can provide at least a good initialization for MAP estimation so that convergence to a desired mode of the posterior density is achieved. There are two major problems with this assumption that we focus in this thesis. First, as the data provide less information, these approaches can get stuck at a local optimum which may not be the desired solution. Second, even though a good initialization directs the segmenting curve to a local optimum solution that looks like the desired segmentation, it does not provide a picture of other probable solutions, potentially from different modes of the posterior density, based on the data and the priors. In this thesis, we propose methods for segmentation of objects that come from multimodal posterior densities and suffer from severe noise, occlusion and missing data. The first framework that we propose represents the segmentation problem in terms of the joint posterior density of shapes and features. We incorporate the learned joint shape and feature prior distribution into a maximum a posteri- ori estimation framework for segmentation. In our second proposed framework, we approach the segmentation problem from the approximate Bayesian inference perspective. We propose two different Markov chain Monte Carlo (MCMC) sampling based image segmentation approaches that generates samples from the posterior density. As a final contribution of this thesis, we propose a new shape model that learns binary shape distributions by exploiting local shape priors and the Boltzmann machine. Although the proposed generative shape model has not been used in the context of object segmentation in this thesis, it has great potential to be used for this purpose. The source code of the methods introduced in this thesis will be available in https://github.com/eerdil
    corecore