24,486 research outputs found

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant t∈Nt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    Density theorems for intersection graphs of t-monotone curves

    Full text link
    A curve \gamma in the plane is t-monotone if its interior has at most t-1 vertical tangent points. A family of t-monotone curves F is \emph{simple} if any two members intersect at most once. It is shown that if F is a simple family of n t-monotone curves with at least \epsilon n^2 intersecting pairs (disjoint pairs), then there exists two subfamilies F_1,F_2 \subset F of size \delta n each, such that every curve in F_1 intersects (is disjoint to) every curve in F_2, where \delta depends only on \epsilon. We apply these results to find pairwise disjoint edges in simple topological graphs

    Plane augmentation of plane graphs to meet parity constraints

    Get PDF
    A plane topological graph G=(V, E) is a graph drawn in the plane whose vertices are points in the plane and whose edges are simple curves that do not intersect, except at their endpoints. Given a plane topological graph G=(V, E) and a set CG of parity constraints, in which every vertex has assigned a parity constraint on its degree, either even or odd, we say that G is topologically augmentable to meet CG if there exists a set E' of new edges, disjoint with E, such that G'=(V, E¿E') is noncrossing and meets all parity constraints. In this paper, we prove that the problem of deciding if a plane topological graph is topologically augmentable to meet parity constraints is NP-complete, even if the set of vertices that must change their parities is V or the set of vertices with odd degree. In particular, deciding if a plane topological graph can be augmented to a Eulerian plane topological graph is NP-complete. Analogous complexity results are obtained, when the augmentation must be done by a plane topological perfect matching between the vertices not meeting their parities. We extend these hardness results to planar graphs, when the augmented graph must be planar, and to plane geometric graphs (plane topological graphs whose edges are straight-line segments). In addition, when it is required that the augmentation is made by a plane geometric perfect matching between the vertices not meeting their parities, we also prove that this augmentation problem is NP-complete for plane geometric paths. For the particular family of maximal outerplane graphs, we characterize maximal outerplane graphs that are topological augmentable to satisfy a set of parity constraints. We also provide a polynomial time algorithm that decides if a maximal outerplane graph is topologically augmentable to meet parity constraints, and if so, produces a set of edges with minimum cardinality

    A conjugation-free geometric presentation of fundamental groups of arrangements II: Expansion and some properties

    Full text link
    A conjugation-free geometric presentation of a fundamental group is a presentation with the natural topological generators x1,...,xnx_1, ..., x_n and the cyclic relations: xikxik−1...xi1=xik−1...xi1xik=...=xi1xik...xi2x_{i_k}x_{i_{k-1}} ... x_{i_1} = x_{i_{k-1}} ... x_{i_1} x_{i_k} = ... = x_{i_1} x_{i_k} ... x_{i_2} with no conjugations on the generators. We have already proved that if the graph of the arrangement is a disjoint union of cycles, then its fundamental group has a conjugation-free geometric presentation. In this paper, we extend this property to arrangements whose graphs are a disjoint union of cycle-tree graphs. Moreover, we study some properties of this type of presentations for a fundamental group of a line arrangement's complement. We show that these presentations satisfy a completeness property in the sense of Dehornoy, if the corresponding graph of the arrangement has no edges. The completeness property is a powerful property which leads to many nice properties concerning the presentation (such as the left-cancellativity of the associated monoid and yields some simple criterion for the solvability of the word problem in the group).Comment: 17 pages, 9 figures; final version, which corrects a mistake in the published versio

    Unavoidable Immersions and Intertwines of Graphs

    Get PDF
    The topological minor and the minor relations are well-studied binary relations on the class of graphs. A natural weakening of the topological minor relation is an immersion. An immersion of a graph H into a graph G is a map that injects the vertex set of H into the vertex set of G such that edges between vertices of H are represented by pairwise-edge-disjoint paths of G. In this dissertation, we present two results: the first giving a set of unavoidable immersions of large 3-edge-connected graphs and the second on immersion intertwines of infinite graphs. These results, along with the methods used to prove them, are analogues of results on the graph minor relation. A conjecture for the unavoidable immersions of large 3-edge-connected graphs is also stated with a partial proof
    • …
    corecore