15,287 research outputs found

    Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks

    Get PDF
    The recognition of disease and chemical named entities in scientific articles is a very important subtask in information extraction in the biomedical domain. Due to the diversity and complexity of disease names, the recognition of named entities of diseases is rather tougher than those of chemical names. Although there are some remarkable chemical named entity recognition systems available online such as ChemSpot and tmChem, the publicly available recognition systems of disease named entities are rare. This article presents a system for disease named entity recognition (DNER) and normalization. First, two separate DNER models are developed. One is based on conditional random fields model with a rule-based post-processing module. The other one is based on the bidirectional recurrent neural networks. Then the named entities recognized by each of the DNER model are fed into a support vector machine classifier for combining results. Finally, each recognized disease named entity is normalized to a medical subject heading disease name by using a vector space model based method. Experimental results show that using 1000 PubMed abstracts for training, our proposed system achieves an F1-measure of 0.8428 at the mention level and 0.7804 at the concept level, respectively, on the testing data of the chemical-disease relation task in BioCreative V

    Spanish named entity recognition in the biomedical domain

    Get PDF
    Named Entity Recognition in the clinical domain and in languages different from English has the difficulty of the absence of complete dictionaries, the informality of texts, the polysemy of terms, the lack of accordance in the boundaries of an entity, the scarcity of corpora and of other resources available. We present a Named Entity Recognition method for poorly resourced languages. The method was tested with Spanish radiology reports and compared with a conditional random fields system.Peer ReviewedPostprint (author's final draft

    Learning Dictionaries for Named Entity Recognition using Minimal Supervision

    Full text link
    This paper describes an approach for automatic construction of dictionaries for Named Entity Recognition (NER) using large amounts of unlabeled data and a few seed examples. We use Canonical Correlation Analysis (CCA) to obtain lower dimensional embeddings (representations) for candidate phrases and classify these phrases using a small number of labeled examples. Our method achieves 16.5% and 11.3% F-1 score improvement over co-training on disease and virus NER respectively. We also show that by adding candidate phrase embeddings as features in a sequence tagger gives better performance compared to using word embeddings.Comment: In 14th Conference of the European Chapter of the Association for Computational Linguistic, 201

    Automated recognition of malignancy mentions in biomedical literature

    Get PDF
    BACKGROUND: The rapid proliferation of biomedical text makes it increasingly difficult for researchers to identify, synthesize, and utilize developed knowledge in their fields of interest. Automated information extraction procedures can assist in the acquisition and management of this knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity recognition of well-defined molecular objects such as genes, but less work has been performed to identify disease-related objects and concepts. Furthermore, promise has been tempered by an inability to efficiently scale approaches in ways that minimize manual efforts and still perform with high accuracy. Here, we have applied a machine-learning approach previously successful for identifying molecular entities to a disease concept to determine if the underlying probabilistic model effectively generalizes to unrelated concepts with minimal manual intervention for model retraining. RESULTS: We developed a named entity recognizer (MTag), an entity tagger for recognizing clinical descriptions of malignancy presented in text. The application uses the machine-learning technique Conditional Random Fields with additional domain-specific features. MTag was tested with 1,010 training and 432 evaluation documents pertaining to cancer genomics. Overall, our experiments resulted in 0.85 precision, 0.83 recall, and 0.84 F-measure on the evaluation set. Compared with a baseline system using string matching of text with a neoplasm term list, MTag performed with a much higher recall rate (92.1% vs. 42.1% recall) and demonstrated the ability to learn new patterns. Application of MTag to all MEDLINE abstracts yielded the identification of 580,002 unique and 9,153,340 overall mentions of malignancy. Significantly, addition of an extensive lexicon of malignancy mentions as a feature set for extraction had minimal impact in performance. CONCLUSION: Together, these results suggest that the identification of disparate biomedical entity classes in free text may be achievable with high accuracy and only moderate additional effort for each new application domain
    • …
    corecore