18,377 research outputs found

    Learning Sparse Adversarial Dictionaries For Multi-Class Audio Classification

    Full text link
    Audio events are quite often overlapping in nature, and more prone to noise than visual signals. There has been increasing evidence for the superior performance of representations learned using sparse dictionaries for applications like audio denoising and speech enhancement. This paper concentrates on modifying the traditional reconstructive dictionary learning algorithms, by incorporating a discriminative term into the objective function in order to learn class-specific adversarial dictionaries that are good at representing samples of their own class at the same time poor at representing samples belonging to any other class. We quantitatively demonstrate the effectiveness of our learned dictionaries as a stand-alone solution for both binary as well as multi-class audio classification problems.Comment: Accepted in Asian Conference of Pattern Recognition (ACPR-2017

    Supervised Dictionary Learning

    Get PDF
    It is now well established that sparse signal models are well suited to restoration tasks and can effectively be learned from audio, image, and video data. Recent research has been aimed at learning discriminative sparse models instead of purely reconstructive ones. This paper proposes a new step in that direction, with a novel sparse representation for signals belonging to different classes in terms of a shared dictionary and multiple class-decision functions. The linear variant of the proposed model admits a simple probabilistic interpretation, while its most general variant admits an interpretation in terms of kernels. An optimization framework for learning all the components of the proposed model is presented, along with experimental results on standard handwritten digit and texture classification tasks

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005

    Interpretable Low-Rank Document Representations with Label-Dependent Sparsity Patterns

    Full text link
    In context of document classification, where in a corpus of documents their label tags are readily known, an opportunity lies in utilizing label information to learn document representation spaces with better discriminative properties. To this end, in this paper application of a Variational Bayesian Supervised Nonnegative Matrix Factorization (supervised vbNMF) with label-driven sparsity structure of coefficients is proposed for learning of discriminative nonsubtractive latent semantic components occuring in TF-IDF document representations. Constraints are such that the components pursued are made to be frequently occuring in a small set of labels only, making it possible to yield document representations with distinctive label-specific sparse activation patterns. A simple measure of quality of this kind of sparsity structure, dubbed inter-label sparsity, is introduced and experimentally brought into tight connection with classification performance. Representing a great practical convenience, inter-label sparsity is shown to be easily controlled in supervised vbNMF by a single parameter
    • …
    corecore