1,782 research outputs found

    A Classifier-guided Approach for Top-down Salient Object Detection

    Full text link
    We propose a framework for top-down salient object detection that incorporates a tightly coupled image classification module. The classifier is trained on novel category-aware sparse codes computed on object dictionaries used for saliency modeling. A misclassification indicates that the corresponding saliency model is inaccurate. Hence, the classifier selects images for which the saliency models need to be updated. The category-aware sparse coding produces better image classification accuracy as compared to conventional sparse coding with a reduced computational complexity. A saliency-weighted max-pooling is proposed to improve image classification, which is further used to refine the saliency maps. Experimental results on Graz-02 and PASCAL VOC-07 datasets demonstrate the effectiveness of salient object detection. Although the role of the classifier is to support salient object detection, we evaluate its performance in image classification and also illustrate the utility of thresholded saliency maps for image segmentation.Comment: To appear in Signal Processing: Image Communication, Elsevier. Available online from April 201

    Trace Quotient with Sparsity Priors for Learning Low Dimensional Image Representations

    Full text link
    This work studies the problem of learning appropriate low dimensional image representations. We propose a generic algorithmic framework, which leverages two classic representation learning paradigms, i.e., sparse representation and the trace quotient criterion. The former is a well-known powerful tool to identify underlying self-explanatory factors of data, while the latter is known for disentangling underlying low dimensional discriminative factors in data. Our developed solutions disentangle sparse representations of images by employing the trace quotient criterion. We construct a unified cost function, coined as the SPARse LOW dimensional representation (SparLow) function, for jointly learning both a sparsifying dictionary and a dimensionality reduction transformation. The SparLow function is widely applicable for developing various algorithms in three classic machine learning scenarios, namely, unsupervised, supervised, and semi-supervised learning. In order to develop efficient joint learning algorithms for maximizing the SparLow function, we deploy a framework of sparse coding with appropriate convex priors to ensure the sparse representations to be locally differentiable. Moreover, we develop an efficient geometric conjugate gradient algorithm to maximize the SparLow function on its underlying Riemannian manifold. Performance of the proposed SparLow algorithmic framework is investigated on several image processing tasks, such as 3D data visualization, face/digit recognition, and object/scene categorization.Comment: 17 page

    Discriminative Bayesian Dictionary Learning for Classification

    Full text link
    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.Comment: 15 page

    External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    Full text link
    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real-world noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real-world noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real-world noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real-world noisy images.Comment: 14 pages, 13figures, IEEE Trans. Image Processing 27(6): 2996-3010 (2018

    Task-Driven Dictionary Learning for Hyperspectral Image Classification with Structured Sparsity Constraints

    Full text link
    Sparse representation models a signal as a linear combination of a small number of dictionary atoms. As a generative model, it requires the dictionary to be highly redundant in order to ensure both a stable high sparsity level and a low reconstruction error for the signal. However, in practice, this requirement is usually impaired by the lack of labelled training samples. Fortunately, previous research has shown that the requirement for a redundant dictionary can be less rigorous if simultaneous sparse approximation is employed, which can be carried out by enforcing various structured sparsity constraints on the sparse codes of the neighboring pixels. In addition, numerous works have shown that applying a variety of dictionary learning methods for the sparse representation model can also improve the classification performance. In this paper, we highlight the task-driven dictionary learning algorithm, which is a general framework for the supervised dictionary learning method. We propose to enforce structured sparsity priors on the task-driven dictionary learning method in order to improve the performance of the hyperspectral classification. Our approach is able to benefit from both the advantages of the simultaneous sparse representation and those of the supervised dictionary learning. We enforce two different structured sparsity priors, the joint and Laplacian sparsity, on the task-driven dictionary learning method and provide the details of the corresponding optimization algorithms. Experiments on numerous popular hyperspectral images demonstrate that the classification performance of our approach is superior to sparse representation classifier with structured priors or the task-driven dictionary learning method

    Deep Boosting: Joint Feature Selection and Analysis Dictionary Learning in Hierarchy

    Full text link
    This work investigates how the traditional image classification pipelines can be extended into a deep architecture, inspired by recent successes of deep neural networks. We propose a deep boosting framework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we construct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the image representation with a joint discriminative-generative formulation, i.e. minimization of empirical classification error plus regularization of analysis image generation over training images. For optimization, we perform two iterating steps: i) to minimize the classification error, select the most discriminative features using the gentle adaboost algorithm; ii) according to the feature selection, update the filters to minimize the regularization on analysis image representation using the gradient descent method. Once the optimization is converged, we learn the higher layer representation in the same way. Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential to build very deep architectures. Second, the generated image representation is compact and meaningful. In several visual recognition tasks, our framework outperforms existing state-of-the-art approaches

    Histopathological Image Classification using Discriminative Feature-oriented Dictionary Learning

    Full text link
    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. {Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not availableComment: Accepted version to Transaction on Medical Imaging, 13 page

    Discriminative models for robust image classification

    Full text link
    A variety of real-world tasks involve the classification of images into pre-determined categories. Designing image classification algorithms that exhibit robustness to acquisition noise and image distortions, particularly when the available training data are insufficient to learn accurate models, is a significant challenge. This dissertation explores the development of discriminative models for robust image classification that exploit underlying signal structure, via probabilistic graphical models and sparse signal representations. Probabilistic graphical models are widely used in many applications to approximate high-dimensional data in a reduced complexity set-up. Learning graphical structures to approximate probability distributions is an area of active research. Recent work has focused on learning graphs in a discriminative manner with the goal of minimizing classification error. In the first part of the dissertation, we develop a discriminative learning framework that exploits the complementary yet correlated information offered by multiple representations (or projections) of a given signal/image. Specifically, we propose a discriminative tree-based scheme for feature fusion by explicitly learning the conditional correlations among such multiple projections in an iterative manner. Experiments reveal the robustness of the resulting graphical model classifier to training insufficiency.Comment: Doctoral dissertation, Department of Electrical Engineering, The Pennsylvania State University, 201

    Face Recognition in Low Quality Images: A Survey

    Full text link
    Low-resolution face recognition (LRFR) has received increasing attention over the past few years. Its applications lie widely in the real-world environment when high-resolution or high-quality images are hard to capture. One of the biggest demands for LRFR technologies is video surveillance. As the the number of surveillance cameras in the city increases, the videos that captured will need to be processed automatically. However, those videos or images are usually captured with large standoffs, arbitrary illumination condition, and diverse angles of view. Faces in these images are generally small in size. Several studies addressed this problem employed techniques like super resolution, deblurring, or learning a relationship between different resolution domains. In this paper, we provide a comprehensive review of approaches to low-resolution face recognition in the past five years. First, a general problem definition is given. Later, systematically analysis of the works on this topic is presented by catogory. In addition to describing the methods, we also focus on datasets and experiment settings. We further address the related works on unconstrained low-resolution face recognition and compare them with the result that use synthetic low-resolution data. Finally, we summarized the general limitations and speculate a priorities for the future effort.Comment: There are some mistakes addressing in this paper which will be misleading to the reader and we wont have a new version in short time. We will resubmit once it is being corecte

    Iterative Residual Image Deconvolution

    Full text link
    Image deblurring, a.k.a. image deconvolution, recovers a clear image from pixel superposition caused by blur degradation. Few deep convolutional neural networks (CNN) succeed in addressing this task. In this paper, we first demonstrate that the minimum-mean-square-error (MMSE) solution to image deblurring can be interestingly unfolded into a series of residual components. Based on this analysis, we propose a novel iterative residual deconvolution (IRD) algorithm. Further, IRD motivates us to take one step forward to design an explicable and effective CNN architecture for image deconvolution. Specifically, a sequence of residual CNN units are deployed, whose intermediate outputs are then concatenated and integrated, resulting in concatenated residual convolutional network (CRCNet). The experimental results demonstrate that proposed CRCNet not only achieves better quantitative metrics but also recovers more visually plausible texture details compared with state-of-the-art methods.Comment: rejected by AAAI 201
    • …
    corecore